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ABSTRACT

Faults in heating, ventilation and air conditioning (HVAC) systems cause increased energy consumption,
degrading thermal comforts, growing operational cost and reduced system lifespan. An effective evalua-
tion of fault effects is critical to the development of various fault diagnostics solutions, the improvement
of operation maintenance and the optimization of monitoring systems. In the HVAC area, a majority of
research work in evaluating fault effects was to analyze energy consumption impacts or thermal comfort
impacts. However, a handful of research has been conducted on evaluating fault effects on various mea-
surements, which are increasingly employed to monitor equipment’s operation. Fault effects on various
measurements may display different symptom patterns and present changed sensitivities when the
equipment operates under various faults, severity levels, as well as operation conditions. However, a
long-term observation of fault symptoms under various operation conditions, different fault types and
severity levels to evaluate fault effects is extremely challenging. In this paper, a simulation-based frame-
work was proposed to evaluate fault effects in fan coil units (FCUs). Two metrics namely fault symptom
occurrence probability (SOP) and fault symptom daily continuous duration (SDCD) were developed to
quantify fault symptoms under various FCU faults. A total of 18 common FCU faults at different severity
levels were implemented on the developed HVACSIM+ simulation platform to obtain a full year fault
inclusive data set for 48 fault simulation cases. The framework, as well as obtained SOP and SDCD distri-
butions will benefit multiple folds such as the development of probability-based fault diagnostics infer-
ence approaches, optimization of sensor location, and fault prioritization.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In buildings, heating, ventilation and air conditioning (HVAC)
systems are critical to maintain zone thermal comforts and desired
air quality for occupants. However, numerous HVAC systems oper-
ate under faulty conditions which cause increased energy con-
sumption, deteriorated zone thermal comfort, decreased air
quality, as well as increased maintenance cost and reduced system
lifespan [1]. For example, studies show that 15-30% energy con-
sumption is wasted due to faults, malfunctioning and degrading
equipment as well as poor maintenance in HVAC systems in com-
mercial buildings [2]. To enhance a reliable HVAC system operation
and avoid energy wastes, comprehensive works have been con-
ducted to develop various automated fault detection and diagnos-
tics (FDD) approaches in the past thirty decades [3]. A study shows
that the average 8% energy consumption can be saved after apply-
ing FDD solutions in commercial buildings [4].
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Another research area related to HVAC system faults is to eval-
uate fault effects. Fault symptoms and impacts are the effects of a
fault on various measurements, components, control objectives
and operation performance. Fault effects reflect the undesired or
unpermitted operating states of a system, i.e., when a fault occurs,
equipment operation experiences abnormal changes (discrepan-
cies) compared to the normal operation, and generates residuals
which are reflected by either direct measurements (e.g., sensor
readings and control signals), or indirect measurements (e.g., rules
obtained from comparing multiple measurements). A complete
and systematic evaluation on fault effects may benefit many facets.
First, the fault effects evaluation enables an effective fault prioriti-
zation which would benefit various aspects such as efficient fault
correction and system maintenance. For instance, after evaluating
the service costs of various faults in rooftop units (RTUs), Breuker
et al. ranked RTU faults to facilitate RTU maintenance [5]. Secondly,
the faults and effects evaluation has been widely used in develop-
ing FDD approaches. The observable fault symptoms on various
measurements were employed by system operators to determine
system operational abnormalities. This heuristic process evolved
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Nomenclature

Symbols

€ Difference value

Yo Observed value of a measurement

Vref Nominal reference value of a measurement
Yn Normal value of a measurement

n Mean value of samples

c Standard deviation of samples

Abbreviations

FDD Fault detection and diagnostics
OAT Outdoor air temperature
RM_TEMP Zone air temperature

MAT Mixed air temperature

DAT Discharge air temperature
RAT Return air temperature

CVLV_DM  Cooling coil valve control signal
CLG_GPM  Cooling coil water flow rate
CLG_RWT  Cooling coil return water temperature

HVLV_DM Heating coil valve control signal
HTG_GPM Heating coil water flow rate
HTG_RWT Heating coil water return rate
DA_CFM Discharge air flow rate

OA_CFM  Outdoor air flow rate

DMPR_DM Outdoor air damper control command signal
SPD Fan speed

MA_HUMD Mixed air relative humidity
DA_HUMD Discharge air relative humidity
RA_HUMD Return air relative humidity

SoP Symptom occurrence probability
SDCD Symptom daily continuous duration

to some fault diagnostics approaches such as rule-based fault diag-
nostics [6] and the expert system [7]. Additionally, some data-
driven FDD approaches, which rely on building automation system
(BAS) interval data collected from diverse measurements, may also
need an accurate cause-and-effect analysis to facilitate the devel-
opment of an inference model. For example, in a Bayesian Network
(BN)-based fault diagnostic method, both qualitative and quantita-
tive models need to be developed to represent fault cause-and-
effect relations in different HVAC subsystems [8]. Lastly, the faults
and effects evaluation can improve the design of a monitoring sys-
tem by optimizing the sensor deployment and hence increase the
monitoring efficiency [9].

Compared to other types of HVAC equipment such as chillers,
air handling units (AHUs) or variable air volume (VAV) terminal
units, there is a lack of efficient monitoring strategies for the oper-
ation of a fan coil unit (FCU). FCUs are simple and decentralized
air-conditioning devices which are primarily used to locally condi-
tion the air in zones. Compared with other HVAC systems, FCUs can
be easily and flexibly deployed in buildings where the space is lim-
ited to install ducts [10]. Therefore, FCUs are widely used in various
types of buildings including offices, hotels, schools, as well as res-
idential apartments in the U.S and in Europe. An evaluation on the
effects under FCU faulty operation will significantly improve the
monitoring performance of FCUs and facilitate the early detection
of FCU faults.

This paper studies the effects of FCU faults utilizing simulated
system operation data. It proposes a new evaluation framework
to bridge the gap of a lack of systematic evaluation of fault effects
on FCU measurements. The framework includes fault symptom
characterization, baseline generation, and fault effects evaluation.
Specifically, we quantify fault effects in terms of two metrics,
namely symptom occurrence probability (SOP) and symptom daily
continuous duration (SDCD), to represent the fault symptom
occurrence likelihood and intensity respectively.

When evaluating fault effects, a long-term observation on the
equipment faulty operation under multiple operating conditions,
and under various fault severity levels is required. However, this
may be very time-consuming and expensive in real practice. To
address this challenge, we employ simulation data to study fault
symptoms on various measurements which include sensor read-
ings and control signals in FCUs. The simulation data, which are
generated on the HVACSIM+ based FCU model, enable a thorough
analysis on the system operation under different faults, fault sever-
ity levels and operating conditions. In addition, existing fault effect
evaluation methods cannot fully assess impacts a fault has on sys-
tem measurements, which may be employed to develop FDD

approaches, optimize the measurement deployment and prioritize
faults, as will be discussed in Section 2 in detail.

The proposed framework, as well as obtained SOP distributions
and SDCD distributions on each measurement can be used for eval-
uating FCU fault effects, developing and validating fault models, as
well as optimizing measurement deployment and prioritizing
faults.

The research results presented in this paper are based on the
HVAC system Fault Data Curation project which aims at building
the largest HVAC system fault database in the world. The HVAC
system fault data used in this research have been fully validated
through the developed protocol to ensure the data quality. The fol-
lowing sections are arranged as: Section 2 reviews past works on
the fault effects and impacts analysis. Section 3 presents the pro-
posed method, as well as introduces the simulation process. Sec-
tion 4 illustrates the process of evaluation and analysis, as well
as discusses the applications of the developed method and results.
Section 5 concludes the paper and proposes future work direction.

2. Related works

We illustrate some valuable studies which evaluated fault
symptoms or impacts. Among those studies, data collected from
laboratory experiment tests and simulation platforms were often
employed. The assessment on fault impacts or symptoms were car-
ried out through analyzing various measurements connecting to
the BAS, or through analyzing different metrics such as energy con-
sumption, operating or maintenance costs as well as occupants’
comforts.

Among the laboratory experiment tests, several representative
studies are reviewed as below. Comstock et al. investigated eight
common faults under different cooling loads in a centrifugal chiller
in a laboratory environment [11]. A total of 13 measurements were
used to evaluate the measurement sensitivity under chiller’s faulty
operation. Breuker et al. investigated common faults and corre-
sponding impacts on the rooftop units (RTUs) [5]. In the study,
96 fault tests at 4 load levels and 24 fault severity levels were per-
formed via the experimental tests to evaluate fault impacts on the
transient profiles of nine performance indices. The authors ana-
lyzed the fault symptoms on the transient profiles. The quantita-
tive changes in RTU cooling capacity, coefficient performance,
and two temperature measurements were analyzed. Although
the authors concluded some generic rules that described the fault
impact directions on various temperature measurements, they did
not quantify the symptoms on five temperature measurements.
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Cho et al. carried out transient pattern analysis for HYAC FDD [12].
In the study, four types of faults in the VAV HVAC system were
imposed in a real test chamber to obtain system faulty operation
data. The study concluded the evolution of fault residuals to form
patterns which can be used to isolate faults. Additionally, the
authors found the temporal patterns in multiple components
caused when a fault occurs and recovers to steady state. However,
the authors did not report if the patterns will be affected by system
operating conditions. Schein et al. extracted 28 rules for AHUs
named AHU performance assessment rules (APAR) from the obser-
vation of fault symptoms on temperature measurements and nor-
malized control signals [13]. The developed APAR has been widely
used by market FDD solutions. Although the authors gave the
thresholds for each rule as the judgment on whether the symptom
can be observed and the rule is violated, the authors did not pro-
vide the quantifiable thresholds under different operating
conditions.

Compared with hardware experiments, simulation platforms
are more efficient to evaluate HVAC system fault impacts. For
example, Chen et al. employed both EnergyPlus and Modelica tools
to develop a single duct VAV system model to analyze fault impact
[14]. In the study, the simulation scenarios were selected from two
aspects of evaluations, quantitative long-term (week/month/year)
impacts, as well as chronological short-time (within hours)
dynamic impacts, which can be also used to generate a fault onset
data set for FDD method testing. In addition, the study also
reported relations between some physical faults and control logic
sequence and the seasonal operating conditions. However, only
fault impacts on energy consumption were quantified and only a
few days in each season were used to evaluate fault impacts. Shi
et al. developed three steps to evaluate fault impacts using
EnergyPlus-based building performance simulation (BPS) to
address the challenge of quantitatively translating the symptoms
caused by a fault to specific inputs inside a BPS model [15]. How-
ever, the authors only used mean values to quantify directly
observable symptoms, and used three quartiles (i.e., 25%, 50%
and 75%) to approximate indirect estimated symptoms. Li et al.
proposed a fault impact analysis framework by incorporating the
fault model library with the EnergyPlus simulation tool [16]. In
the study, 129 fault modes from 41 groups of fault models were
simulated from the medium sized office case. Fault occurrence
probability models were integrated into the simulation platform
to more accurately evaluate the magnitude of fault impacts in
buildings in different climate zones. However, the framework only
focused on site energy impact and HVAC energy impact within one
year scope, and no analysis on fault symptoms on various measure-
ments was performed.

In summary, the above studies have investigated a fault’s effects
from many angles. However, the following two major gaps, which
prevent a complete understanding of a fault’s effects as, still exist:

1) When evaluating fault effects or impacts, most research
works have been conducted on evaluating final or long-
term fault impacts such as annual energy consumption,
thermal comforts and operating costs [16-18]. However, lit-
tle research has been conducted on quantitatively evaluating
fault effects on system measurements which are often pre-
sented as fault symptoms and are commonly used to assess
a system’s dynamic operation, as well as to develop FDD
approaches.

2) Some studies have used trend data comparison to visualize
the fault symptoms on measurements under one operating
condition [11,14,19]. However, fault symptoms may be sen-
sitive to various operating conditions such as control
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sequences, weather conditions, as well as fault severity
levels. The uncertainties of observable fault symptoms were
never investigated.

To address the above issues, in the proposed simulation-based
fault effect evaluation framework, we focused the evaluation on
fault symptoms, and quantified fault symptoms on various mea-
surements. Two new metrics (i.e., SOP and SDCD), which can eval-
uate fault symptom occurrence frequency and intensity on various
measurements, will be illustrated in detail in this paper.

3. Methodology

Fig. 1 shows the framework of the methodology as will be illus-
trated in the following sections. We first illustrate the characteris-
tics of a fault symptom in HVAC system operation in Section 3.1. In
Section 3.2, we introduce the method of baseline data generation.
Then, we illustrate two metrics that quantify an observable fault
symptom as fault symptom occurrence probability in Section 3.3
and fault symptom duration in Section 3.4. Lastly, we present
how the FCU faults are simulated, as well as the fault inclusive
and exclusive data set used for the fault effect analysis in
Section 3.5.

3.1. Overview of fault symptoms

1) Introduction of fault symptom generation methods.

When a fault occurs, fault symptoms could be reflected as devi-
ations of sensor readings or control signal from normal values on
various measurements in the system [20]. In a control system, fault
symptoms may present different patterns because the system’s
operation may be complicated. There are several studies discussing
the fault symptom patterns [20-23]. For example, in [21] fault
symptoms are classified into two categories: semantic symptoms
and trend symptoms. A semantic symptom can be obtained by
comparing the difference between a measurement’s current value
and its nominal reference value. This type of symptoms can
become more notable and will continue to be observed for a period
after a fault occurs. A trend symptom refers to the changing rate of
a measurement value. This type of symptom is more significant at
the initial phase when a fault occurs but is not observable after a
time period when the system reaches another steady state.

In our research, semantic symptoms were analyzed. There are
three methods to produce semantic symptoms. In the first method,
the normal value is presented by using the nominal reference value
(e.g., the temperature setpoint or rated fan speed) required by the
control system as shown in Fig. 2 (a). When the difference between
observed values and nominal values exceeds a certain threshold,
the exceeding value could represent an observable symptom as
given in Eq. (1). For example, the zone temperature setpoint of a
FCU can be used to determine if abnormal zone temperature can
be observed.

Szyo_.)/ref (1)

where y, is the observed value of a measurement (e.g., zone tem-
perature) in the system, y,,, is the nominal reference value the mea-
surement (e.g., zone temperature setpoint), and ¢ is the difference
between the nominal value and measured value.

In the second method, the normal value of each individual mea-
surement is obtained through data collected during equipment’s
fault-free operation as shown in Fig. 2 (b). The difference between
a measurement’s current value and its normal value is calculated
to produce fault symptoms as given in Eq. (2):

E=Yo = Wn (2)
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Fig. 1. Framework of the methodology.
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Fig. 2. Demonstration of fault symptom generation methods.

where y, is the observed value of a measurement (e.g., measured
discharge air temperature value from the sensor) in the system, y,
is the normal value of the measurement (e.g., calculated discharge
air temperature mean value under equipment’s fault-free opera-
tion), and ¢ is the difference between the normal value and mea-
sured value.

In the third method, the symptom can be produced by compar-
ing concurrent values collected from two or more different mea-
surements in the system as shown in Fig. 2 (c). The difference
between current values collected by different measurements can
be calculated according to certain rules as given in Eq. (3). For
example, in AHU performance assessment rules [13], the mixed
air temperature (MAT) in the AHU is compared with the outdoor
air temperature (OAT) to determine if a fault symptom occurs
and to indicate an outdoor air damper stuck fault.

8:f(yalvy027"'7yoj) (3)

where y,; is j™ the observed value of a measurement in the system
(e.g., MAT or OAT), and ¢ is the difference among various measured
data sets (e.g., the difference between MAT and OAT).

In this study, we employed the first and second method to pro-
duce fault symptoms and evaluate fault effects on various mea-
surements. For the first method, both the zone temperature
cooling setpoint and heating setpoint are used as the reference
value. For the second method, the normal value of the measure-
ment y, is calculated from the normalized baseline data by using
the z-score method (assuming the distributions of deviations on
each measurement to be normal distributed), which has been
mostly employed by data-driven methods as:

7 = Yo — H
o

After normalizing the baseline data, the mean value y and stan-

dard deviation ¢ of each measurement can be obtained as:

1 n
ﬂ:ﬁ;)/i

where y; is the i observation and n is the number of observations.
Therefore, the symptom can be obtained when the absolute dif-

ference between each observation and the mean value of measure-

ment is higher than the standard deviation as given in Eq. (4).

(4)

where y, is the observed time series data, t is the threshold value
(e.g., 1, 2, ...). In this study, t is set to one as the threshold (with a
68% confidence level) despite the “three-sigma empirical rule” has
been often adopted and the value of three standard deviations (with
a 99.7% confidence level) has often been used. This is because a
lower threshold means a smaller deviation of the measured value
can be captured, and then can be determined as an observed symp-
tom event. Therefore, a lower threshold may increase the sensitivity
of a measurement considering the HVAC system faults (especially at
a mild severity level) may not generate significant measured devia-
tions on measurements.

The method of the baseline data generation will be illustrated in
Section 3.2.

2) Fault symptom direction.

A symptom'’s direction can be labeled as a positive direction or a
negative direction to represent the direction of a measured value
compared to the baseline value, i.e., a difference (&) is higher than
the baseline value or lower than the baseline value respectively. It
is noted that for the same fault, the fault symptom direction of a
measurement can be different due to various operating conditions.
For example, if an outdoor air damper is stuck at a higher position
in a FCU, the mixed air temperature could be higher than the base-
line when the OAT is high (e.g., in the summer season), and be
lower than the baseline when the OAT is low (e.g., in the winter
season). In addition, the MAT may not present a symptom when
the OAT is close to the MAT. Therefore, the correct identification
of a fault symptom direction under specific operating conditions

Wol) -l >txao
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should be critical for the FDD process. Otherwise, error FDD results
may be triggered when applying certain rules without considering
the symptom direction. In this study, a sign (“+” or “-") is associ-
ated with the fault symptom’s direction to represent positive or
negative deviation of the observed value.

3) Fault symptom magnitude.

The symptom magnitude can be presented by using a qualita-
tive description or a quantitative description. In the qualitative
description, the symptom magnitude is obtained through heuristic
analysis of system operation from building operators’ observation
[20]. Through this way, fault symptom severity levels can be qual-
itatively classified by using linguistics variables (e.g., small, med-
ium and large) or by certain vague values. Although this
qualitative description of the fault symptom magnitude is rela-
tively obscure, these depictions of fault symptoms are widely used
in FDD approaches because obtaining an accurate degree value of a
fault symptom is usually difficult and unnecessary in many engi-
neering practices. Therefore, the qualitative representation of the
fault symptom magnitude could enable the development of some
FDD approaches. For example, in [23], the fault symptom magni-
tudes were qualitatively described as trend data signature and
classified into seven levels for fuzzy-logic based fault diagnostics
in the chemical process industry. In the quantitative description,
numeric values are used to quantify measurement sensitivities or
fault symptom magnitudes. For instance, a sensitivity factor was
defined from the measurement residual for the worst fault case
and the maximum uncertainty for the specific measurement to
evaluate chiller fault impacts [11]. In the study, the upper limit
and lower limit of sensitivity factors in the selected measurements
were given to demonstrate the fault impacts under various faults
in chillers. Similarly, Dash et al. [23] evaluated the fault symptom
intensity by calculating the relative sensitivities from each mea-
surement and its threshold.

Intuitively, the more severe a fault is, the stronger a fault symp-
tom (i.e., a higher magnitude level of a fault symptom) on a mea-
surement would be. As a consequence, the fault symptoms could
be more likely to be observed or captured by the FDD methods.
However, in an HVAC system, fault symptom magnitude could also
be affected by multiple factors such as weather conditions, system
control sequence or internal load conditions as discussed in the
Introduction Section. Therefore, more metrics need to be employed
to accurately quantify fault symptom presence as well as the mea-
surement sensitivity.

In this study, apart from the above-mentioned two characteris-
tics of fault symptoms, we proposed two additional metrics to
evaluate fault symptoms as illustrated in Section 3.3 and
Section 3.4.

3.2. Baseline generation

To reliably produce observable fault symptoms, it is critical to
generate the baseline data set from the fault-free data under vari-
ous operation conditions (e.g., control sequence, weather condi-
tions and zone load), which match operation patterns from the
faulty data set. In addition, when evaluating the fault symptom
occurrence frequency (as explained in Section 3.3), the symptom
occurrence probability needs to be more accurately calculated by
considering the baseline data distribution. In this study, a
weather-based pattern matching (WPM) method, which was
developed in a FDD approach, was employed to generate the base-
line data from the fault-free data [24]|. The WPM method was
employed by using the OAT as an indicator to match FCU operation
patterns and generate the baseline data. This is because OAT is one
critical driver which affects building thermal load, HVAC equip-
ment operation and energy consumption [25]. When performing
the WPM method, the OAT during the system’s one year operation
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period was first equally binned. Then, FCU fault-free operation data
within the same binned OAT window was grouped to generate the
baseline data.

The number of binned OAT windows affects the generation of
the baseline data. In this study, the determination of the number
of binned OAT windows included two considerations as 1) the
FCU operation performance within each binned OAT window
should be similar; and 2) the sample size within one binned OAT
window should be large enough to reach a statistical significance.
After evaluating the FCU’s operation, the OAT during the FCU’s one
year operation period was equally binned to ten windows in this
research to generate the baseline data. Consequently, ten baseline
subsets were formed under each binned OAT window. Then the
baseline data within each binned OAT window was normalized
to obtain the mean value and the standard deviation for each mea-
surement as illustrated in Section 3.1. The operation time ratio
within each binned OAT window will be given in Section 4.1. Fault
symptoms on each measurement will be generated by comparing
the fault data and the baseline within each binned OAT window.

3.3. Fault symptom occurrence probability

Different measurements may have different sensitivities
according to faults types, severity levels and operating statuses.
In this study, the fault symptom occurrence probability (SOP) is
proposed to quantify the symptom occurrence frequency, i.e., what
is the likelihood that a fault symptom could present on a measure-
ment when a fault occurs. The SOP can be calculated by counting
the number of observations of fault symptoms during a range of
time periods when a fault occurs.

In this study, two steps are employed to calculate the fault SOP.
First, the SOP under each binned OAT window is calculated as
given in Eq. (5).

>~ num_fault_sym

P(fault-sym|OPosr) = =<~0b time ?

where num_fault_sym is the time when a fault symptom is observed,
and OP_time is the total operational period within each binned OAT
window.

Secondly, the total probability distribution of the fault symptom
occurrence is calculated. There are multiple probability weighting
approaches that can be used to calculate the total probability [26]
In this study, we employ the Bayesian approach [27] to calculate
the total probability distribution of a symptom under each fault
type and one fault severity level as given in Eq. (6).

num_bin_window

P(fault_sym|OPoar) = P(fault_sym|OPoar);P(OPoar);

(6)

where P(fault_sym|OPoar); is sSSOP the under the i" binned OAT win-
dow as given in Eq. (5), P(OPour); is the operating ratio of the it
binned OAT window under all operating time, num_bin_window is
the total number of binned OAT windows.

Then, the range of the fault SOP under various fault severity
levels can be obtained for each type of fault as illustrated in
Section 4.

3.4. Fault symptom daily continuous duration

Fault symptom duration is the time period of a fault that may
affect the measurement of a sensor in a dynamic control system
[9]. The analysis of fault symptom duration is critical to identify
symptom patterns and can be used for multiple applications such
as the evaluation of fault detectability, sensor location optimiza-
tion and fault isolation [9,28-30]. In this study, the fault symptom



Y. Chen, G. Lin, Z. Chen et al.

daily continuous duration (SDCD) is proposed to evaluate a fault
symptom duration in FCUs. The SDCD represents whether a fault
symptom could be constantly present during an operating day. A
higher SDCD that a fault triggers, the measurement can solidly gen-
erate a symptom without being affected by various operating con-
ditions. For example, if the outdoor air damper of a FCU is stuck at a
certain position, the outdoor air flow, which is measured by the
outdoor air flow sensor, should be continuously present as a symp-
tom during the operating day no matter what the operating condi-
tion is. However, the discharge air temperature measured by the
discharge air temperature sensor may not present continuous
abnormality as discharge air temperature is affected by the control
of the cooling coil valve or heating coil valve.

The SDCD is calculated as given in Eq. (7).

SDCD = Max(Contiuous_OP_time_daily) (7)

where Contiuous_OP_time_daily is the continuous sample of a fault
symptom collected in an operating day.

The overall SDCD for a specific measurement can be obtained by
evaluating the whole year operation of an equipment, i.e., the per-
centage of the SDCD in a year as given in Eq. (8).

n .
PctSDCD = 7231)592 NCE Ry (8)
YAt
where > 7SDCDypresn is the number of days that the SDCD is more
than a certain time threshold (e.g., 60 min in this study), and
operating_day is the total number of operating days.

3.5. Description of simulation

In this section, we illustrate how the fault simulation platform
was set up and what control sequences and parameters were
applied to operate the FCU.

3.5.1. Description of the simulation platform

A FCU (as illustrated in the left part in Fig. 3) is a common ter-
minal equipment to condition zones in residential and commercial
buildings in the U.S. and Europe. In this study, we employed the
FCU model which was originally developed as a tool for evaluating
FDD approaches [19]. A vertical four pipe hydronic FCU was mod-
eled through the HVACSIM+ software [31]. Compared with other
fault impact studies which often used EnergyPlus, the FCU fault
model developed on the HVACSIM+ software tool has several
advantages as: 1) the platform includes more detailed dynamic
component models such as the damper model and the valve
model; 2) the platform allows the HVAC and control systems to
be simulated with a much finer time step (as low as 2.5 s), so that
the dynamic operating performance of the equipment can be cap-
tured more accurately; and 3) various measurements can be easily
modeled and embedded in the simulation platform to provide
complete measures to evaluate equipment’s dynamic operation.

In this study, the FCU model includes a fan that operates at
three speed levels as high, medium and low. The FCU is controlled
to maintain zone air temperature to the thermostat heating and
cooling setpoints. The equipment physical configuration schematic
and measurements are illustrated in the right part of Fig. 3. In this
schematic, the various types of measurements are color labeled
such that the red color text represents the sensor reading, and
the blue color text represents the control signal.

In this study, a total of 17 measurements including 14 sensors
and three control signals were used to monitor and control the
FCU’s operation. The measurements included in the dataset are
summarized in Table 1. It is noted that some measurements (e.g.,
cooling coil entering water temperature and cooling coil returning
water temperature) are not often deployed in real practice. How-
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ever, we included those measurements when developing the FCU
model to more accurately capture the equipment operating profile
and validate the model. In this study, we also analyzed those mea-
surements to show that some measurements can be valuable to
reflect the equipment operational performance and hence can be
considered when designing the FCU monitoring system.

Both the FCU fault-free model and fault inclusive model were
validated in the lowa Energy Center during the model development
process. The detailed fault model validation process can be found
in [19].

3.5.2. Description of control sequence

The occupied operation mode was set to 6:00 to 18:00 from
Monday to Friday. Four control sequences, which are normally
used in the FCU control in fields, were used for cooling coil valve
control, heating coil valve control, fan control, and outdoor air
damper control, respectively.

During the occupied mode, the zone cooling setpoint was set to
22.2 °C (72 °F) and heating setpoint was set to 20 °C (68 °F). Two
PID control loops were used to adjust both cooling coil valve posi-
tion and heating coil valve position respectively. If the zone tem-
perature was above 21.67 °C (71 °F), i.e., 0.56 °C (1 °F) below the
cooling setpoint, the FCU switched to the “cooling” mode. The cool-
ing coil valve PID loop was enabled and the cooling valve position
was controlled by the PID controller. If the zone temperature was
below 20.56 °C (69 °F), i.e., 0.56 °C (1 °F) above the heating set-
point, the FCU switched to the “heating” mode. The heating coil
valve PID loop was enabled and the heating valve position was
controlled by the PID controller.

In the FCU model, a 3-speed fan with “Automatic On/Off” (Auto)
mode was adopted. The operation of fan on/off status and fan
speed is controlled according to the cooling PID output and heating
PID output. There are three speed levels: 1) low-speed condition:
the PID outputs (the cooling/heating coil valve position) is >0%
and <40%; 2) medium speed condition: the PID outputs (the cool-
ing/heating coil valve position) is >= 40% and < 80%; and 3) high-
speed condition: the PID outputs (the cooling/heating coil valve
position) is >= 80% and <100%. A 10% dead band was set at each
speed switchover level. When there is no heating or cooling
demand, the supply air fan stops running.

The outdoor air damper was controlled to maintain a minimum
damper position at 30% open position during the operation of the
FCU.

3.5.3. Other simulation settings

Apart from the control sequences for FCU operation, the
weather data and the zone load profile were defined to simulate
the outer and inner operation conditions. In this study, the TMY
weather data file for Des Moines, IA, U.S., where the FCU model
was validated, was used as the weather inputs. The internal load
density was set to be varied to simulate a typical load pattern in
a zone in commercial buildings on weekdays. The hourly zone load
density during the occupied hours within a weekday is given in
Fig. 4.

3.5.4. Description of fault tests and data

In the study, 18 types of faults which include two sensor related
faults (i.e., zone air temperature sensor positive bias fault and neg-
ative bias fault), six actuator related faults (i.e., outdoor air damper
stuck fault, outdoor air damper leakage fault, cooling coil valve
stuck fault, cooling coil valve leakage fault, heating coil valve stuck
fault, and heating coil valve leakage fault), seven static part related
faults (i.e., fan outlet blockage fault, heating coil fouling airside
fault, heating coil fouling waterside fault, cooling coil fouling air-
side fault, cooling coil fouling waterside fault, filter restriction fault
and outside air inlet block fault), and three control related faults
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Fig. 3. Left: layout of FCU; right: schematic of a fan coil unit in the simulation.

Table 1
Summary of FCU data measurements.
No. Measurement Description Unit
Name
1 RM_TEMP Zone temperature °C
2 MAT Mixed air temperature °C
3 DAT Discharge air temperature °C
4 RAT Return air temperature °C
5 CVLV_DM Cooling coil valve control signal Open (0-1)
6 CLG_GPM Cooling coil water flow rate m3/s
7 CLG_RWT Cooling coil return water °C
temperature
8 HVLV_DM Heating coil valve control signal Open(0-1)
9 HTG_GPM Heating coil water flow rate m3/s
10 HTG_RWT Heating coil return water °C
temperature
11 DA_CFM Discharge air flow rate m3/s
12 OA_CFM Outdoor air flow rate m3/s
13 DMPR_DM Outdoor air damper control signal % Open
14 SPD Fan speed rev/s
15 MA_HUMD Mixed air relative humidity %

16 DA_HUMD
17 RA_HUMD

N

Discharge air relative humidity
Return air relative humidity

>

(i.e., cooling control reverse fault, heating control reverse fault, and
control stable fault), were simulated. Among these 18 fault types,
13 faults were simulated at different fault severity levels as
described in Appendix I of this paper. Consequently, a total of 48
fault cases were simulated in this study. Each fault case was simu-
lated for one-year operation to obtain a complete operating data
set under different weather conditions. Detailed descriptions for
each type of fault and implementation methods can be found in
the Appendix I of this paper.

Both fault-free (i.e., fault exclusive) data and faulty (i.e., fault
inclusive) data were generated in .csv format files. The faulty data
for each fault case was stored in one .csv file and was used to eval-
uate the fault symptoms. The fault-free data was used to generate
the baseline data.

4. Results

In this section, we present the results of fault symptom analysis.
We first provide the primary parameters obtained from the fault-
free data as fundamentals in Section 4.1. Then we provide an
example fault case to show the analysis scenario, and illustrate
the total SOP results from all fault test cases as given in Section 4.2.
We provide SDCD results to show the fault symptom intensity fol-
lowed by one example as given in Section 4.3. Finally, we discuss

some potential applications of the fault effect evaluation in
Section 4.4.

4.1. Description of baseline data

In this study, the simulation time step was set to 5 s, which is a
common time interval used by field direct digital controllers to
update their output. The simulation output rate was set to 1-
minute interval, which is the common data sampling rate in the
BAS. Consequently, for the fault-free test case and each fault test
case, the simulation generates 187,920 operating minutes (i.e.,
the number of samples under a 1-min sampling rate) and 12 oper-
ating hours within 261 operating days for the fault-free case and
each fault test case in one year.

The OAT in the operating time period is equally binned into 10
windows with a bin size of 6 °C. Table 2 provides the median OAT
value, operation duration and operation time ratio in each binned
OAT window. It can be seen that the operation duration from the
#5 window to the #9 window accounts for 74.5% of operation
minutes.

Among 17 measurements listed in Table 1, the symptom on the
zone temperature measurement is generated based on method #1,
i.e., zone temperature is compared with the zone temperature set-
point to generate symptoms. In this study, we extend 0.82 °C to the
setpoint (i.e., the cooling setpoint plus 0.82 °C and the heating set-
point minus 0.82 °C) as the baseline to generate the fault symptom
on the zone temperature. For the HVAC systems in commercial
buildings or residential buildings where the zone temperature set-
point is not required to be accurately maintained, this may avoid
too many observations of zone temperature abnormalities. Conse-
quently, the positive symptom is recorded when zone temperature
is higher than 23.7 °C, and the negative symptom is recorded when
zone temperature is lower than 18.9 °C.

Symptoms on other 16 measurements are generated from
method #2, i.e., the measurement data in the fault inclusive data
set is compared with the baseline (i.e., mean value of the measure-
ment under each binned OAT window) generated through the
fault-free data set.

4.2. SOP analysis

Here, we employ the “heating valve leakage” (VLVLeak_Heat-
ing) fault as an example to demonstrate the SOP analysis scenario.
This fault was simulated under three severity levels as 20%, 50%,
and 80% were simulated. Figs. 5-7 provide SOP distribution results
for each measurement under each binned temperature window.
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Fig. 4. Hourly zone load setting (kW).

Table 2

Primary parameters for fault symptom evaluation.
Bin No. Bin #1 Bin #2 Bin #3 Bin #4 Bin #5 Bin #6 Bin #7 Bin #8 Bin #9 Bin #10
Median OAT (°C) -203 -14.4 -85 -2.5 34 9.4 15.7 213 27.2 33.1
Operation duration (minutes) 2445 7580 11,919 17,665 31,987 21,548 21,127 32,737 32,640 8272
Operation time ratio (%) 1.3 4.0 6.3 9.4 17.0 115 11.2 174 174 4.4

The darker circle (or the smaller circle) shows the lower SOP for the
specific measurement, and the lighter circle (or the larger circle)
shows the higher SOP for the specific measurement.

From Figs. 5-7, it can be seen that for some measurements, the
SOP values in the high temperature windows are high. For exam-
ple, under the fault severity level at 20% leakage, the SOP value
of CVLV_DM at a positive direction dramatically increases in the
#7 window (i.e., binned OAT at 15.7 °C).This is because when
the OAT is high, the cooling coil valve position should be increased
to compensate for the extra cooling need caused by the leaking
heating valve fault. Hence, this fault causes a simultaneous heating
and cooling operation status.

The total SOP for each measurement under a specific fault
severity level can be calculated by using Eq. (6). For the faults
which were simulated on various severity levels (e.g., for the cool-
ing coil stuck fault, there are five severity levels), the total SOP
ranges can be obtained to indicate SOP values calculated under dif-
ferent severity levels. The total SOP distribution results for each
measurement under 18 fault types are illustrated in two enhanced
heatmaps as Figs. 8 and 9. In both enhanced heatmaps, the blue
color cells and pink color cells represent a single SOP value, which
indicates two conditions as 1) there was only one fault severity
level in such a fault type (e.g., the Control_CoolingReverse fault),
and 2) the SOP values are the same under different severity levels
(e.g., the RM_TMP for the OABlock fault), for each measurement. In
addition, we also color labeled the cells with red, orange, and green
respectively to categorize the total SOP ranges, which were
obtained when a SOP value varies under different fault severity
levels. In both figures, the total SOP range values are categorized
into three levels as 1) the minimum value is higher than 50% (in
red color). For example, the MAT under the Sen-
sorBias_RMTemp_Neg fault (the SOP (+) ranges from 68% to
84%); 2) the difference between minimum value and maximum
value is higher than 40% (in orange color). For example, the cooling
water flow rate (CLG_GPM) under the SensorBias_RMTemp_Pos
fault (the SOP (+) ranges from 33% to 57%); and 3) the maximum
value is lower than 50% and difference between minimum value

and maximum value is lower than 40% (in green color). For exam-
ple, the MAT under the FilterRestriction fault (the SOP (+) ranges
from 4% to 21%).

Additionally, from Figs. 8 and 9, it canbe seen that for the
VLVLeak_Heating fault, the total SOP value may be different for
various measurements. Three measurements such as HVLV_DM,
DMPR_DM, MA_HUMD, the total SOP values are relatively lower.
This is due to two reasons. First, the fault symptoms on some mea-
surements can be hardly observed. For example, the total SOP
value on the DMPR_DM measurement (either for the positive
symptom or negative symptom) is zero because the damper con-
trol loop in the simulation does not include any measurements
in the FCU, and hence, is relatively isolated. Second, the operation
time period when the occurrence of the symptom is relatively
short. For example, a high SOP value for the HVLV_DM as can be
seen in the # 1, #2, #3 and #4 windows (i.e., when the OAT is rel-
atively low) as shown in Figs. 5 to 7. However, the operation time
ratios for those four binned OAT windows are only 1%, 4%, 6% and
9% respectively. This causes the total SOP value to be relatively low.

Five measurements (i.e., DAT, CVLV_DM, CLG_GPM, CLG_RWT,
and HTG_GPM) have significantly high SOP values (i.e., the mini-
mum SOP is higher than 50%). This indicates that fault symptoms
on those measurements can be more easily observed. For example,
for the DAT measurement, the positive symptom total SOP ranges
from 50% to 91% under different severity levels, i.e., the discharge
air temperature would be more likely higher than the baseline
when the heating coil valve is leaking. When the valve leaking is
more severe, the symptom will be more observable. While for this
measurement, the negative symptom total SOP isat 0% which
means that it is impossible to observe the discharge air tempera-
ture to be lower than the baseline when the heating coil valve is
leaking.

Among the measurements that have high total SOP value, the
narrow total SOP range of a measurement for a specific fault indi-
cates that this measurement may have a similar occurrence prob-
ability for various fault severity levels. For example, the
measurements of CVLV_DM, CLG_GPM, and HTG_GPM have posi-
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Fig. 5. SOP under each binned OAT window, VLVLeak_Heating fault (20% leakage).
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Fig. 7. SOP under each binned OAT window, VLVLeak_Heating fault (80% leakage).

tive symptoms SOP range from 74% to 77%, 73% to 77%, and 86% to
97% respectively. Therefore, when using the SOP values to develop
fault diagnostics methods, those measurements may not be used as
a general way to isolate faults regardless of the fault severity levels.

The SOP value may vary in a very wide range depending on differ-
ent severity levels. For example, the SOP values for the positive
symptom on the DAT can range from 50% to 91%. This means that
the observability of fault symptoms on DAT are very sensitive to
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fault severity levels. But the overall symptom occurrence is high
and hence this measurement can be used for diagnostic inference.

In addition, nine measurements (i.e., RM_TEMP, MAT, RAT,
HTG_RWT, DA_CFM, OA_CFM, SPD, DA_HUMD, RA_HUMD) have
wide ranges of total SOP values, considering different fault severity
levels. For example, for the RM_TEMP, the total SOP value ranges
from 4% to 60%. This not only indicates that the observability of
fault symptoms on those measurements are very sensitive to fault
severity levels, but also shows that the usage of those measure-
ments in the diagnostic inference should be careful as will be dis-
cussed in Section 4.4.

4.3. SDCD analysis

As the FCU operation simulation data is output at a 1-minute
time interval, the SDCD analysis is to test how many continuous
minutes that a fault symptom can be observed. As illustrated in
Section 3.4, SDCD represents whether a fault symptom could be
constantly present during an operating day. For each fault, the
mean SDCD ranges of positive symptom and negative symptom
for all fault severity levels were calculated by averaging the SDCD
values calculated from 261 operating days.

Figs. 10 and 11 illustrate the mean SDCD values of two symp-
tom directions for each measurement respectively. Using the same
approach when presenting the total SOP results as illustrated in

10

Figs. 8 and 9, we use blue cells and pink cells to indicate the single
mean SDCD value, as well as color labeled cells to categorize the
SDCD range values when various fault severities were performed
in Figs. 10 and 11. We categorized the SDCD range values into four
levels according to the minimum value of the mean SDCD and
maximum value of the mean SDCD. These four levels are: 1) the
minimum value is higher than 121-min (in red color). For example,
the MAT under the SensorBias_RMTemp_Neg fault (the mean
SDCD (+) ranges from 475-min to 558-min); 2) the minimum value
is between 61-min to 120-min (in orange color). For example, the
DAT under the OADMPRLeak fault (the mean SDCD (+) ranges from
72-to 73-min); 3) the minimum value is lower than 60-min and
the difference between minimum and maximum value is higher
than 120-min (in yellow color). For example, the MAT under the
FilterRestriction fault (the mean SDCD (+) ranges from 24-min to
127-min); and 4) the minimum value is lower than 60-min and
the difference between minimum and maximum value is higher
than 120-min (in green color). For example, the MAT under the
OADMPRLeak fault (the mean SDCD (+) ranges from 42-min to
106-min).

It can be seen that for some measurements, the mean SDCD is
very low. For example, for the damper position control signal
(DMPR_DM), the mean SDCD of negative symptom (i.e., the dam-
per control signal is lower than 30% as it should be) is higher than
60-min only for the “outdoor air damper stuck” fault under certain
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fault severity levels, but not for other faults. After checking the
operation, it was found that this symptom occurs when the out-
door air damper is stuck at a higher position during the winter sea-
son (when the OAT is very low). Consequently, this caused the FCU
operation to be terminated according to a specific control sequence
when the MAT was lower than 0 °C. Therefore, the DMPR_DM out-
put zero value which was lower than the baseline. This indicates
that the outdoor air damper control signal cannot be strongly
affected by most faults, and hence, the symptom cannot continu-
ously present. On the contrary, the mean SDCD values for some
measurements are higher for most faults. That is to say, the symp-
tom can continuously present during a day if a fault occurs. For
example, the MAT presents a higher mean SDCD value at most
faults. However, the range of mean SDCD value for some faults at
different severity levels may be very wide. For example, for the
cooling coil stuck fault, the mean SDCD of MAT can range from
2-min to 376-min depending on various fault severity levels. This
suggests that the continuous symptom presence may be sensitive
to certain fault severity levels. For the minor fault, the fault symp-
tom may not be observed continuously.

In addition, the evaluation of the SDCD can be carried out by
analyzing the percentage of days that the SDCD value is higher
than a predefined threshold value. For example, the percentage
of days, which the SDCD value is higher than 60-min, can be calcu-
lated to determine if the fault symptom is a strong symptom or a
weak symptom.

Here, we use the “cooling coil stuck” (VLVStuck_Cooling) fault
as an example to demonstrate the SDCD analysis. This fault was
imposed at five severity levels as the valve was stuck at 0%, 20%,
50%, 80% and 100% position respectively. Fig. 12 shows the per-
centage of operating days that the SDCD values are higher than
60-min under each fault severity level. It can be seen that under
the VLVStuck_Cooling fault, four measurements such as DAT,
MAT, HTG_RWT, and DA_HUMD tend to steadily present a higher
percentage of operation days (i.e., higher than 50% operating days)
under the SDCD value is higher than 60-min. For example, for the
DAT measurement, the percentage of operating days reaches 87%
for the positive symptom (discharge air temperature is higher than
the baseline) when the valve is stuck at 0% position. This value is
67%, 82%, 84% and 84% for negative symptoms (discharge air tem-
perature is lower than the baseline) when the valve is stuck at 20%,
50%, 80% and 100% position respectively. However, for some
measurements, the percentage of days that the SDCD is higher than
60-min is higher only under some fault severity levels. For exam-
ple, for the SPD measurement, only when the cooling coil valve is
stuck at 0% position, the percentage of days that the SDCD value
is higher than 60-min can reach 75%.

RM TEMP  MAT
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4.4. Discussion

In this section, we discuss applications of the developed frame-
work, as well as the obtained SOP and SDCD values to facilitate the
development of FDD approaches as well as FCU fault prioritization.

4.4.1. SOP scalability

In the study, the total SOP distribution for each measurement is
calculated by aggregating SOP values in each binned OAT window.
A similar total SOP distribution can be calculated by considering
the operation time ratio under different zone loads if the zone load
presents a wide range distribution.

In addition, the total SOP distribution can be re-calculated when
the operating time ratio within each binned OAT window is signif-
icantly different from what is presented in this study. For example,
if a building is located in a hot climate zone where a higher per-
centage of operation time period is present during the OAT is very
high, the total SOP distributions should be re-calculated by using
the new percentage of time period in each binned OAT window
as given in Eq. (6). For this purpose, we provide the entire SOP dis-
tribution table, which lists all the SOP distributions under each
binned OAT window for each type of fault in Appendix II on the
website. Users can generate the new total SOP distributions by
adjusting the operation time ratio as given in Eq. (6) according to
the climate zone where their buildings are located.

4.4.2. Usage for probability-based fault diagnostics

The total SOP distribution table can be used to develop infer-
ence approaches such as Bayesian Network (BN), fuzzy logic or
fault tree in the fault diagnostic process. For example, in the BN
diagnostic method, this table can be used as the conditional prob-
ability distributions in developing the BN parameter model [32]. It
is noted that the total SOP value may highly rely on the fault sever-
ity level as shown in Section 4.2. The total SOP values for some
measurements have a wide range depending on different fault
severity levels. The usage of high total SOP values could cause
the fault diagnostic approach to be very sensitive to the measure-
ment, and as a result, could lead to mis-diagnosis. Therefore, two
approaches are suggested to address this issue. First, the low total
SOP values can be employed at the initial step to weaken the sen-
sitivity of measurement and modified after the real diagnostic
result is obtained to evaluate the fault diagnostic method. For
example, for the RM_TEMP measurement, the total SOP value
ranges from 4% to 60% for the VLVLeak_Heating fault as given in
Section 4.2. An initial total SOP value of 5% to 15% can be adopted
to test the diagnostic method. Second, a discretization processing
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Fig. 10. Positive symptom (+) mean SDCD range for each type of fault (minutes).

11



Y. Chen, G. Lin, Z. Chen et al.

Energy & Buildings 263 (2022) 112041

RM TEMP  MAT DAT RAT  CVLV DM (LG GPM CLG RWT HVLV DM HTG GPM HTG RWT DA CFM OA CFM DMPR DM  SPD  MA HUMD DA HUMDRA HUMD
Cantrol_CooIingRevemm w8 15 | @ w % W u ® ® w9 ®1
Control_HeatingReverse ji] W non B m 455 | I Min value>121 min
Control Untable] 55 383 14 8 % 2 W& m B 18 16 61 min<Min value<120
FanOutletBlockage [ 40| 102 49 st %5 |4 B 8 06 no W 8% min
FterRestricion| 11 61119 118345 3044 3648 297 68221 369 12 115340 963 0416 565 72433 W ——
Fouling_Cooling_Airside| 1011 56109 94311 3097 3950 2598 60490 64 12 91307 960 TS5 56 74407 Betieen hia Gid
Fouling_Cooling_ Waterside| 41| 5183 7277 245 4351 3B Se6d 2 DOANN 6 W BU N 88 max>120 min
Fouling Heating_Airside| 1041 56108 94312 3047 3850 2538 688 65 12 91308 060 1% 586 74108 00 o 0 i and
Fouling_Heating_ Waterside| 1247 5094 7794 267 51 39 5414 2850 04 7483 B BE G G99 min and max<120 min
OABlockaee| m % B 0 % e & 3 s B » e
OMDMPRLesk| 1113 4947 8186 3645 5467 30 59455 1521 %9 W 05 07 10543
OADMPRStuck| 8204 51498 73385 28453 5091 36110 54450 20023 19 71391 A M6 T 2166
SensorBias_AMTemp_pos| 79 o 30 [ we 12 B8 B8 20 2049
SensorBias RMTemp_neg| 1420 2832 544 37 0ME %5 123 1819 543 1947
VIVLeak Cooling| 1722 97411 B 645
VIVieak Heating| 15 82109 S 618 021 8094
VIVStuck Coolig| 102 21117 20493 22481 16445 0462 25952 334 01 20540 24 60304 31430
ViVStuck Heating] 1276 8032 0333 4304 se7 o2 [N 37 09 095 381 361 148 381 T 46 TS

Fig. 11. Negative symptom (-) mean SDCD range for each type of fault (minutes).
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Fig. 12. Percentage of operating days that the SDCD is higher than 60-min (using VLVStuck_Cooling fault).

can be used to discretize the total SOP value [33]. For example, the
total SOP value of a measurement can be divided into three levels
as “weak” (say, the total SOP value from 0% to 25%), “moderate”
(say, the total SOP value from 26% to 50%), and “strong” (say, the
total SOP value from 51% to 100%). By this means, the RM_TEMP
measurement under the VLVLeak_Heating fault can be considered
as a measurement showing a “moderate” symptom.

4.4.3. Fault ranking according to SDCD results

The fault ranking based on the energy consumption impact and
zone comfort impact was usually carried out. In this study, we rank
the fault according to the fault impacts on system operation perfor-
mance, i.e., fault effects on various measurements. Here, we use
the SDCD result and three steps to rank the fault. First, we classify
three SDCD levels such that the SDCD is<60-min (i.e., the level 3
measurement group), the SDCD is between 61-min to 120-min
(i.e., the level 2 measurement group), and the SDCD is>121-min
(i.e., the level 1 measurement group). Second, we analyze how
many measurements may fall into that level. Last, we rank the fault
according to the number of measurements following the order of
level 3 to level 1. This reflects that fault impacts on measurements
based on a temporal scale. Therefore, the more numbers of mea-
surements in the longer duration of symptom occurrence may
indicate that the fault affects the system operating performance
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more significantly. We use the SDCD value calculated under the
minor fault severity level to rank the fault. For example, for the
VLVStuck_Heating fault, the mean SDCD values of positive symp-
tom on the RM_TEMP measurement is from 4-min to 508-min at
different fault severity levels, as can be seen in Fig. 10. Here, we
use 4-min and this measurement falls into the level 3 measure-
ment class. Additionally, if a measurement falls into two classes
for the positive symptom and the negative symptom respectively,
we classify the measurement to a higher level. For example, for the
MAT under the Control_HeatingReverse fault, the SDCD values for
the positive symptom and negative symptom are 424-min and 79-
min respectively. Therefore, we classify this measurement into the
level 1 group. Table 3 provides the fault ranking result.

It can be seen that the Control_HeatingReverse fault may cause
the most severe fault impact on the system operating performance
because under such a fault, the mean SDCD values for 16 measure-
ments are higher than 121-min (i.e., level 1 measurement). How-
ever, the VLVStuck_Cooling fault has a minor impact on the
system operating performance because under such a fault the
mean SDCD value for only one measurement (i.e., HTG_RWT) is
higher than 61-min. Two reasons lead to a lower ranking result
of the VLVStuck_Cooling fault. First, we select the mean SDCD
value from the minor fault severity level (i.e., valve stuck at a
20% position) to rank the faults. Consequently, under this fault
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Table 3
Fault ranking result (according to the lowest SDCD value of each measurement).
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Rank Fault name Number of level 1 measurements Number of level 2 measurements (61 to Number of level 3 measurements
No. (>121 min) 120 min) (<60 min)
1 Control_HeatingReverse 16 0 1

2 VLVLeak_Heating 15 0 2

3 FanOutletBlockage 10 1 6

4 VLVLeak_Cooling 9 2 6

5 Control_CoolingReverse 8 3 6

6 SensorBias_RMTemp_Pos 8 2 7

7 SensorBias_RMTemp_Neg 7 4 6

8 OABlockage 7 2 8

9 Control_Unstable 5 6 6

10 VLVStuck_Heating 4 3 10

11 FilterRestriction 2 9 6

12 Fouling_Cooling_Airside 2 7 8

13 Fouling_Heating_Airside 2 7 8

14 OADMPRLeak 1 5 11

15 OADMPRStuck 0 7 10

16 Fouling_Cooling_Waterside 0 6 11

17 Fouling_Heating_Waterside 0 5 12

18 VLVStuck_Cooling 0 1 16

severity level, the operational behavior is very close to the normal
operational behavior. This causes minor and unobservable fault
symptoms. Secondly, the equipment operation is relatively robust
when this fault occurs because the control sequence can compen-
sate for the negative effects caused by the fault. For example, the
control sequence can increase the fan speed to provide more cool-
ing needs in the cooling mode, or increase the heating coil valve
position to compensate for the unnecessary cooling in the heating
mode.

5. Conclusions and future work

In this paper, we illustrate a simulation-based evaluation
framework to systematically analyze fan coil unit (FCU) fault
effects which are presented as fault symptoms on various mea-
surements. In the framework, we discussed fault symptom gener-
ation methods commonly used in monitoring HVAC systems.
When analyzing fault symptoms, apart from the fault symptom
direction and magnitude which were previously investigated, we
employed two novel metrics, namely fault symptom occurrence
probability (SOP) and fault continuous symptom daily duration
(SDCD) to quantify the fault symptom occurrence likelihood and
intensity on measurements under various faults. By using both
metrics to analyze fault symptoms, fault effects on various mea-
surements in a FCU can be completely evaluated.

We imposed 18 types of faults with different severity levels on
the developed FCU simulation platform to generate 48 fault simu-
lation cases. For each case, the simulation was carried out to gen-
erate one-year simulation results so that fault inclusive data cover
all possible inner and outer operation conditions. From the analysis
of SOP and SDCD distributions, we demonstrate that both metrics
can benefit multiple applications such as the development of
probability-based FDD approaches and fault prioritization.

Our future works include: 1) using the developed method to
analyze fault symptoms on more HVAC systems and equipment
so that measurement sensitivities can be obtained for different
type of HVAC systems; 2) employing the Monte Carlo simulation
to simulate faults under different operation modes, climate condi-
tions, and system configurations so that the SOP and SDCD distri-
butions can be more accurately calculated to reflect faulty
operation under various real operation conditions; and 3) evaluat-
ing fault impact propagation in a completed HVAC system so that
hierarchical distribution features of fault effects on various mea-
surements can be obtained.
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Fouling Fouling_ Heating (1) Severe: water flow rate at fully open valve reduces by 50%, heat Increase water flow 3
waterside _Waterside transfer rate reduces by 50%; (2) Middle: water flow rate at fully pressure resistance,
open valve reduces by 30%, heat transfer rate reduces by 30%; and (3) decrease heat transfer
Minor: water flow rate at fully open valve reduces by 10%, heat coefficient
transfer rate reduces by 10%;
Cooling coil Fouling Fouling_Cooling_Airside (1) Severe: air flow resistance increases by 200%, heat transfer rate  Increase air flow pressure 3
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decreases by 0%;
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Minor: water flow rate at fully open valve reduces by 10%, heat coefficient
transfer rate reduces by 10%;
Filter Restriction FilterRestriction Outlet resistance + 23.45%, +56.25%, and + 400% (corresponding to  Increase air flow pressure 3
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difference)
Outdoor air inlet Blockage OABlockage Face area —80% Decrease damper face area 1
Outdoor air damper  Leaking OADMPRLeak Face area + 20%, +50%, and + 80% Increase damper face area 3
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Cooling Valve Stuck VLVStuck_Cooling Stuck at 0%, 20%, 50%, 80% and 100% Assign a fixed simulated 5
controlled device position
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