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A B S T R A C T   

Today, a high volume of operation interval data can be efficiently captured by a diverse range of measurements 
including sensors, control signals and meters, which are deployed in building automation systems (BAS). Hence, 
advanced data analytics tools such as fault detection and diagnostic (FDD) can be developed to analyze the 
operational performance of heating, ventilation and air conditioning (HVAC) systems. In the past, enormous 
efforts have been made to develop various FDD approaches, assuming interval data contains essential infor
mation for identifying fault signatures. However, a “data rich, but information poor” phenomenon exists due to 
the fact that not all measurements are sensitive to faults in HVAC systems. This highlights a significant research 
gap, the lack of systematic analysis of measurement sensitivity to different HVAC system faults, which is vital for 
FDD development, measurement deployment optimization, and control system design. To address this gap, this 
study introduces a novel approach to assess the sensitivity of BAS measurements in relation to various HVAC 
fault types. We propose two sensitivity indices (SI), the SI of fault (SI_fault) and the global measurement SI 
(SI_measurement_global) to quantify measurement sensitivities. The SI_fault quantifies the measurement’s 
sensitivity to a particular fault, while the SI_measurement_global assesses its sensitivity across all fault types. 
These indices integrate probability distributions, enhancing the interpretability and scalability. Utilizing the 
HVACSIM+ fault simulation dataset, which includes 15 common faults at varying severity levels and 89 different 
measurements within an HVAC system, we conducted an extensive analysis of measurement sensitivities by 
looking at the proposed SIs.   

1. Introduction 

In buildings, heating, ventilation and air conditioning (HVAC) sys
tems are used to provide desired thermal comforts and indoor air quality 
for occupants. HVAC systems consume a large portion of energy to 
achieve operational objectives. Based on the Energy Information 
Administration (EIA) of the U.S, HVAC systems in commercial buildings 
in the U.S. account for around 44% total electricity consumption [1]. In 
an HVAC system, various hardware related faults and software related 
faults cause dramatic degradation of system operational performance, 
and consequently lead to substantial energy wastes. Studies show that 
5–30% energy wastes in commercial buildings are caused by various 
faults in HVAC systems in the U.S [2]. Additionally, faults can lead to 

degradation of the indoor thermal comfort, as well as increased opera
tion and maintenance costs [3–5]. 

The operation interval data in HVAC systems is crucial to indicate 
system’ operation status. Today, an efficient data acquisition is 
empowered by the deployment of building automation systems (BAS). 
Consequently, in recent years, extensive studies have been carried out to 
develop various data-driven fault detection and diagnostics (FDD) ap
proaches to detect and diagnose faults in HVAC systems [6–9]. Addi
tionally, other emerging technologies, such as digital twin, have been 
developed to utilize operation interval data to promote knowledge dis
covery and enhance FDD capabilities for HVAC systems [10,11]. 

The successful application of data-driven FDD solutions requires 
certain measurements in the BASs to be sensitive to faults, so that faulty 
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information can be effectively captured and used by those FDD solu
tions. However, the dilemma of “data rich, but information poor” always 
exists [12,13] because measurements may not be sensitive to faults. 

1.1. Motivations 

A high volume of system operation data can be easily collected by a 
variety of measurements in the BAS [14]. For example, Chen et al. re
ported that around 30 measurements (e.g., temperature and humidity 
sensors, and valve control signals) were employed to monitor one piece 
of single-duct air handling unit (AHU) [15]. Additionally, it is reported 
that more than 500 measurements are integrated to the BAS to monitor 
an HVAC system, which contains a primary cooling system (i.e., a chiller 
plant), a heating system (i.e., a boiler plant), and three air distribution 
systems (including three AHUs and 88 associated variable air volume 
(VAV) boxes) in a medium-sized office building [12]. 

Data-driven FDD solutions require a large number of data collected 
by various measurements in the BAS to perform analytics. A typical data- 
driven passive FDD process is given in Fig. 1. In the passive FDD process, 
operation interval data on various measurements of the HVAC system 
are collected by the BAS, and are fed into FDD approaches to create 
baseline and calculate residuals. Then, the data-driven FDD approach 
uses various algorithms to analyze the residual values. An abnormal 
operation event is flagged when fault symptoms (i.e., the residual 
calculated from the incoming data and the baseline is higher than the 
defined threshold) are captured to indicate a fault occurs. After that, the 
diagnostic process is carried out to identify fault signatures, e.g., the 
unique fault symptoms on specific measurements that are associated 
with the specific fault. Through this way, the faulty component location, 
component type or fault type can be determined. Furthermore, the 
application and deployment of digital twin technologies require the 
measurements from the BAS to provide enough information to better 
indicate the system’s operations under both fault-free and faulty con
ditions [16]. 

The sensitivity of a measurement indicates how the operation in
terval data collected by measurements may contain necessary informa
tion associated with a fault (i.e., representing fault signatures). In the 
BAS, not all measurements are sensitive to faults, and hence the data 
collected by those measurements contain little information to identify 
fault signatures. 

In the past, a few studies performed measurement sensitivity ana
lyses under the system’s faulty operation to validate fault models, 
develop rule-based FDD approaches, and optimize sensor locations. For 
example, Rossi et al. evaluated the measurement sensitivity for vapor 
compression air conditioners [17]. In the study, fault symptoms on 
seven temperature measurements and one humidity measurement to 
extract generic rules under five types of faults. Furthermore, the authors 
demonstrated that the developed FDD approach was sensitive to various 
measurements and had different diagnostic capabilities. However, the 
study only provided the symptom directions on each measurement and 
did not quantify the measurement sensitivity. Breuker et al. investigated 
fault impacts on seven temperature measurements in rooftop air con
ditioners [18]. In the study, 96 transient tests were performed at four 
load levels and 24 fault severity levels for five common faults in rooftop 
air conditioners to evaluate both transient and steady effects on the 

measurements. The temperature changing directions under different 
faults were summarized to form generic rules which can be used to 
develop FDD tools. Similarly, the research did not quantify the mea
surement sensitivity. McIntosh et al. analyzed the sensitive character
istic quantities (CQs) of 11 measurements when developing the FDD 
approach for chillers [19]. In the study, the sensitive CQs include the 
value change directions and relative magnitudes on each measurement 
when the chiller operates under a type of fault or operates under two 
normal operating conditions (i.e., load change and heat rejection 
change). For six fault types in chillers, different sensitive CQs were 
proposed for fault identification. Comstock et al. proposed a new metric, 
namely the sensitivity ratio, to quantify the steady-state measurement 
sensitivity under eight common faults in chillers [20]. The sensitivity 
ratio was calculated by comparing the residual of a given measurement 
at the highest severe level and the maximum experimental uncertainty 
of the given measurement. The authors investigated measurement sen
sitivities under various chiller load conditions and fault severity levels. 
Chen et al. studied fault impacts on eight measurements when devel
oping simple rule-based methods for packaged air conditioners [21]. In 
addition to using the sensitivity ratio which was developed in Ref. [21], 
Chen and Braun also showed the deviation degree of each measurement 
under equipment’s faulty operation by using simple symbol labels. The 
authors found that many measurements on packaged air conditioners 
were actually insensitive to the faults, especially when faults were less 
severe. With the obtained measurement sensitivity results, the authors 
identified various measurements which could be used to diagnose faults 
with the severity thresholds. Similarly, when developing a rule-based 
reasoning method to diagnose faults in typical centrifugal chillers. 
Xiao et al. integrated the analysis of the measurement sensitivity to 
enhance the diagnostics accuracy [22]. In the study, both the sensitivity 
and the relative sensitivity of a measurement were defined by comparing 
the residual of a measurement and the predefined threshold. Cho et al. 
employed a transient pattern analysis to investigate fault symptom 
patterns on measurements in the VAV system [23]. In the study, the time 
evolution of fault patterns on various measurements were classified into 
fast and slow patterns based on the lab experimental tests. They found 
that incorrect fault diagnostics could be generated if the time patterns 
were not considered in the FDD analysis. Shi et al. used z-score to 
quantify fault symptom intensities on measurements to assess the fault 
impacts [24]. The authors simulated four faults in an AHU or in building 
envelopes at different fault intensities. 

In addition to experiment-based measurement sensitivity analyses 
illustrated above, some FDD approaches employ a feature extraction/ 
selection process, which tries to extract information and select more 
important features or measurements from system operation [15,25, 
26–28]. 

1.2. Research gaps 

Although a handful of studies investigated the measurement sensi
tivity analysis associated with some HVAC equipment, we identified 
some research gaps as below.  

1) A large body of research employed symbols to qualitatively analyze 
measurement sensitivities. For example, feature residual may have 

Fig. 1. Common process of passive FDD for HVAC systems.  
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one of three values; positive or up-arrow (↑), negative or down-arrow 
(↓), or neutral (i.e., no change, (–)) [18,20,25,29,30]. Similarly, the 
positive symbol (+) or the negative symbol (− ) were used to indicate 
whether the deviation on a measurement is higher or lower than the 
baseline [21]. However, very little research quantified the mea
surement sensitivities. Although using ssymbols to qualitatively can 
indicate how a fault may cause effects on measurements, those rep
resentations neglect the uncertainties caused by fault severities and 
fault occurrence likelihood. Furthermore, those symbols can hardly 
be used in any calculations which are needed in various applications.  

2) Some research proposed data-driven feature selection approaches to 
select measurements from HVAC systems [15,25,26–28]. In addi
tion, some studies used Sobol’s index [31]. However, the selection 
process of features (i.e., measurements) and Sobol’s method were 
normally carried out using data collected in the fault free operation. 
The measurement sensitivity under faulty operations can be very 
different and can be affected by factors such as fault severity levels 
and operation conditions. Consequently, those results can be hardly 
used to completely evaluate the measurement sensitivity to a fault.  

3) Several studies evaluated measurement sensitivity of faults on the 
chiller and vapor compression air conditioner years ago [17,20,22]. 
However, very little research has been carried out to evaluate the 
measurement sensitivity in the air distribution subsystem (e.g., the 
air handling units (AHUs) or variable air volume (VAV) boxes). 
Therefore, it is necessary to investigate the measurement sensitivity 
in the air distribution subsystems.  

4) Several studies investigated the measurement sensitivity from an 
individual component (e.g., chillers and packaged rooftop units). 
However, to the authors’ best knowledge, no research has been 
carried out to study the sensitivities of measurements across different 
levels, i.e., when a fault occurs in an equipment at the upstream 
level, whether the measurements in the downstream system are 
sensitive to the fault. In an HVAC system, measurement sensitivities 
may be affected by various factors such as system physical configu
rations, and control sequences [3]. For example, if a cooling coil 
valve is stuck at a higher than a normal position, the air handling unit 
(AHU) will provide excessive cooling to zones. This fault not only 
causes the supply air temperature to be lower, but also may affect the 
discharge air temperature in the downstream VAV boxes. Therefore, 
there is a need to analyze how measurements at various levels of the 
HVAC system are sensitive to a fault.  

5) Existing research seldom investigated the measurement sensitivity to 
a fault in all operational conditions. Although some research inves
tigated fault impacts under different operational seasons [24,26], the 
analysis of measurement sensitivities should consider more factors 
such as building internal loads. This is especially critical for the air 
distribution system, where the measurement sensitivity is highly 
affected by various operation statuses due to varied internal loads. 

Therefore, a complete investigation of measurement sensitivity 
under various faults is essential to develop various FDD solutions, 
evaluate fault detectability and diagnosability, as well as efficiently 
deploy sensors and collect data. 

1.3. Contributions 

In this study, we proposed a fault symptom-driven method to eval
uate measurement sensitivity under common faults in a HVAC system. 
Because fault symptoms (i.e., the deviation of measured value under a 
faulty operation from the baseline value) on each measurement are the 
direct indications of a fault, the occurrence of a fault symptom can be 
used to evaluate the measurement sensitivity. We calculated fault 
symptom occurrence probability (SOP) of each measurement and per
formed statistical pattern analysis to evaluate the measurement sensi
tivity. In addition, we developed sensitivity indices to quantify the 
measurement sensitivity patterns under common HVAC system faults. 

To fully understand the measurement sensitivity in an air distribution 
system, we employed fault simulation data of an VAV HVAC system 
[32]. The HVAC system, which represents a typical air distribution 
system, includes one dual duct AHU and four associated VAV boxes. 

The contribution of this paper has three aspects. 

● A novel sensitivity analysis method, which includes two new sensi
tivity indices, namely the SI of a fault (SI_fault) and the global 
measurement SI (SI_measurement_global), is proposed to quantify 
how a measurement is sensitive to a specific type of a fault, or all 
common faults in the HVAC system. The SIs are calculated by using 
the symptom occurrence probability distribution, fault occurrence 
probability distributions and fault severity probability distributions.  

● The simulated HVAC system contains 89 measurements in different 
levels (i.e., the upstream AHU side and downstream VAV side), so 
that the developed SIs aresystematically evaluated.  

● The important measurements, which show strong sensitivities under 
system faulty operation, can be manifested to identify fault signa
tures and used for multiple data-driven FDD applications. 

The reminder of this paper is organized as: Section 2 illustrates the 
research methodology. Section 3 presents the fault simulation. Section 4 
illustrates the analysis of the sensitivity indices, as well as provides one 
case study to demonstrate the usage of the SIs. Section 5 concludes the 
paper and proposes the future work. 

2. Methodology 

In this study, we employed the fault symptom-based method to 
quantify the measurement sensitivity. We provide an overview of the 
method in Section 2.1. Finally, we detailed the method through Sections 
2.2 to 2.5. 

2.1. Overview of the method 

Fig. 2 illustrates the method framework which includes four ele
ments. First, we explain how fault symptoms can be used to analyze the 
measurement sensitivity. Secondly, we propose a baseline generation 
method, named weather and internal thermal load pattern matching- 
based method. The method was used to accurately generate fault 
symptoms under different operations of the HVAC system. Thirdly, we 
illustrate the calculation of the fault symptom occurrence probability 
(SOP). Lastly, we demonstrate the calculation process of the measure
ment SIs. 

2.2. Fault symptom-based measurement sensitivity analysis 

In an HVAC system, a fault can cause deviations of measured values 
on various measurements from the baseline [33]. The deviations on the 
measurement can be considered as fault symptoms. A larger magnitude 
of the deviation indicates a strong fault symptom, which is more likely to 
be observed. On the contrary, if the magnitude of the deviation is too 
small, the fault symptoms are weak and may not be easily captured. If a 
measurement is more sensitive to a fault, it means that the fault can 
cause significant deviations from the baseline on the measurement, i.e., 
fault symptoms can be easily captured by the measurements. Therefore, 
observing the occurrence of fault symptoms on a specific measurement 
when a fault occurs can efficiently assess how the measurement is sen
sitive to the fault. 

In [34], Chen et al. illustrated three approaches to identify fault 
symptoms on various measurements when a fault occurs. In addition, 
Chen et al. proposed using symptom occurrence probability (SOP) to 
quantify fault effects with uncertainties [34]. Considering the fault ef
fects evaluation facilitates the analysis of measurement sensitivities, we 
adopted the same analysis scenario in this study. Therefore, we first 
analyzed fault symptom patterns. 
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To generate fault symptoms, we compared the snapshot fault data 
and the normalized baseline data on each measurement to indicate an 
observable fault symptom. The normalized baseline data are generated 
through each binned load and outdoor air temperature (Load-OAT) 
window as will be illustrated in Section 2.3. Within each binned Load- 
OAT window, the mean value and the standard deviation of the opera
tion data on each measurement can be calculated using Eq (1). 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ =
1
n
∑n

i=1
yi

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n − 1
∑n

i=1
(yi − μ)2

√

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Eq 1  

where, yi is the ith data sample collected by each measurement, n is the 
total observation, μ is the mean value, and σ is the standard deviation of 
the measurement. 

Therefore, an observable fault symptom can be obtained when the 
absolute difference between each observation and the mean value of 
measurement is higher than the standard deviation as given in Eq (2). 

|yi − μ|> t × σ Eq 2  

where, t is the threshold value to determine the measurement sensitivity 
(e.g., 1, 2, …). In this study, t is set to three as the threshold (with a 
99.7% confidence level when assuming the distributions of deviations 
on each measurement to be normal distributed). Therefore, a lower 
threshold may increase the sensitivity of a measurement considering 
some HVAC system faults (especially at a minor severity level) may not 
generate significant measured deviations (i.e., symptoms) on 
measurements. 

It is noted that in an HVAC system, the fault symptom direction (i.e., 
the deviation direction compared with the baseline data) can be 
different for the same type fault under different operating conditions. 
For instance, if an outdoor air damper is stuck at a higher position in an 
AHU, the mixed air temperature could be higher than the baseline when 
the OAT is high (e.g., in the summer season), and could be lower than 
the baseline when the OAT is low (e.g., in the winter season). As a result, 
a fault diagnosis process also needs to consider the correct identification 
of fault symptom directions under various operating conditions. Hence, 
when evaluating the measurement sensitivity, we considered both pos
itive symptoms and negative symptoms. 

2.3. Weather and internal thermal load pattern matching-based baseline 
data generation 

The generation of varying baseline data sets, which accurately match 
the system’s various operational patterns, is critical to producing fault 

symptoms [35]. In an HVAC system’s operation, two factors may 
significantly affect the system operating patterns [15,36]. One factor is 
the internal load which comes from either occupants or various types of 
equipment (e.g., lighting and plug-in appliances) in buildings. The 
HVAC system needs to be operated to provide required cooling for in
ternal heat gains. Another factor is the weather conditions (e.g., tem
perature and solar radiant), which can cause heat gain or heat loss to 
buildings; and consequently, affect HVAC system operations. Addition
ally, weather information is used in control sequences in some types of 
equipment to automatically adjust the operating modes and execute 
control logics. For example, the AHU economizer operating mode can be 
controlled by comparing the OAT and mixed air temperature. 

Although some literature used different operating seasons (i.e., 
winter seasons, summer seasons and shoulder seasons) to group opera
tional data to generate the baseline, and analyze the fault impacts with 
each operating season [37], the baseline data subsets generated on three 
operating seasons may not accurately reflect the system’s operating 
patterns and fault effects on various measurements. This is because the 
current HVAC system’s operation is seldom controlled according to the 
strict seasonal classifications. Although some chiller plants’ operation 
can be manually switched in different seasons (i.e., turn on chillers in 
shoulder seasons and turn off chillers in winter seasons), more and more 
HVAC systems, especially secondary air distribution systems, including 
AHUs, are automatically controlled according to weather and internal 
load conditions instead of being controlled based on the predefined 
operating seasons. As a result, the system’s operating patterns can be 
different even within one operating season; and hence the baseline data 
cannot be generated by simply grouping fault free data within the same 
operating season. 

To address this issue, some studies developed HVAC system oper
ating pattern matching approaches [15,38]. For example, a weather and 
schedule-based operating pattern match strategy was developed to map 
incoming operating data of an HVAC system with the historical baseline 
data so that similar operating patterns can be matched for system level 
fault diagnostics [15]. 

In this study, we developed a weather and internal thermal load 
pattern matching-based method which employed both real time weather 
information and building load information to generate the baseline data. 
This method is divided into two steps. First, the internal thermal load 
patterns are determined to group operating periods during occupied 
hours on weekdays. Secondly, the operating periods within each internal 
load pattern is further grouped according to the similar weather infor
mation. In this study, we used the outdoor air temperature (OAT) as the 
indicator to match operating patterns because 1) OAT is a major factor 
to affect the HVAC system’s operation [39]; and 2) in the VAV HVAC 
system in this study, some dual duct AHU control sequences are deter
mined by the OAT. For example, when OAT is higher than 15.6 ◦C, the 

Fig. 2. Overview of the method.  
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AHU is switched to operate in the mechanical cooling mode. Under such 
an operating mode, the cooling coil valve position is adjusted from 0% to 
100%, and the outdoor air damper is operated at the minimum open 
position (e.g., 15%–20% opening position). 

The internal zone load settings are the same for all four separate 
zones as illustrated in Section 3.2. Hence, the internal thermal load can 
be determined by considering the aggregated load from all four zones. 
Load settings were grouped according to their magnitude range. In this 
study, we used two load levels as 1) the load level #1 as the zone internal 
load is equal or lower than 1.0 kW, and 2) the load level #2 as the zone 
internal load is higher than 2.0 kW. This is based on the load settings in 
the simulation as indicated in Fig. 5. 

Then, within each internal thermal load level, the OAT is equally 
binned into equal sized windows. The number of windows is determined 
by the consideration of two factors as 1) the system operational pattern 
within each binned OAT window should be similar; and 2) the sample 
size within each binned OAT window is sufficient. In this study, the OAT 
in each load level is equally binned into ten windows, resulting in a bin 
size of 4.80 ◦C for the load level #1 and 5.15 ◦C for the load level #2. 

In this study, the simulation output rate was set to 1-min time in
terval. Consequently, for the fault-free test case and each fault test case, 
the simulation generates a total of 187,920 operating minutes (i.e., the 
number of samples under a 1-min sampling rate and 12 operating hours 

each day) from 261 operating days for each test case in one year. 
As ten binned OAT windows were used for each internal thermal load 

level, 20 Load-OAT windows (i.e., ten OAT ranges in each load level) 
were generated. For load level #1 (i.e., internal load below 2.0 kW), a 3- 
h operating duration each day (i.e., from 6:00 to 8:59) is obtained, 
resulting in 46,980 min of a year. For load level #2, (i.e., internal load 
level is above 2.0 kW), the operation duration is 9 h each day (i.e., from 
9:00 to 17:59), resulting in a total of 140,940 min of a year. 

Table 1 (a) and (b) list the median OAT value, operation duration (i. 
e., sample size) and operation duration ratio within each Load-OAT 
window for load level #1 and #2, respectively. For each Load-OAT 
window, the operation duration ratio is calculated by dividing the 
operation duration (minutes) by the total operating minutes (i.e., 
187,920 min). For example, for L1-bin #1, the operation duration ratio 
(0.88%) is calculated by dividing 1662 by 187,920. 

2.4. Calculation of fault symptom occurrence probability 

In this study, we used the symptom occurrence probability (SOP) 
metric, which was originally developed to evaluate fan coil unit fault 
effects [34], to evaluate the measurement sensitivity under each fault 
type and with different fault severity levels. The fault severity level is the 
magnitude of a fault. For a hardware related fault, it can be related to the 
physical size of a fault. For example, a sensor bias fault at 2 ◦F indicates a 
2 ◦F deviation of the sensor reading from the real value. For software 
related faults, it can be the magnitude of the parameter setting deviated 
from the normal setting. In Ref. [34], two steps were used to calculate 

the total SOP of a measurement under each specific fault case (i.e., one 
fault with one severity level). First, under each data subset of the 
operation status, the SOP can be calculated by counting the frequency of 
the symptom observations on each measurement under a specific fault 
type and a fault level as given in Eq (3). 

Prob
(
fault sym

⃒
⃒OPLoad OAT

)
=

∑
num fault sym

OP Duration Load OAT
Eq 3  

where Prob
(
fault sym|OPLoad OAT

)
is the SOP value under each binned 

Load-OAT window for one type of a fault under one severity level. 
∑

num fault sym is the total number of fault symptoms observed. Because 
two fault symptom directions can be calculated respectively, 
Prob

(
fault sym|OPLoad OAT

)
can be calculated for positive symptoms and 

negative symptoms, respectively. OP_Duration_Load_OAT is the length of 
each Load-OAT window. 

Secondly, the total SOP (Prob (fault_sym_total)) can be calculated by 
using the law of total probability (can also be interpreted as a weighted 
average) in the Bayesian approach. For each measurement, the SOP 
values (i.e., Prob

(
fault sym|OPLoad OAT

)
obtained in each Load-OAT 

window can be aggregated to obtain the total SOP distributions as 
given in Eq (4).  

where Prob(OPLoad− OAT)i is the operation duration ratio of the ith binned 
Load_OAT window. Table 1 lists the operation duration and the opera
tion duration ratio within each binned Load_OAT window. Num_bin_
window is the total number of binned Load_OAT windows. In this study, 
the num_bin_window is set to 20 because 20 Load-OAT windows are 
used for two load levels together. Therefore, the sum of the operation 
duration ratio for all 20 binned Load_OAT windows is 100%, indicating 
all operation conditions.Table 2 

2.5. Development of measurement sensitivity indices 

The calculation of the measurement SI of a fault (SI_fault) and the 
global measurement SI (SI_measurement_global) incorporated the fault 
severity probability distribution and the fault occurrence probability, 
respectively. 

For each type of fault, a fault occurrence probability is the occur
rence likelihood of a fault. The fault occurrence probability can be 
measured in multiple ways. For example, the probability distribution 
can be obtained by measuring how often a specific type of a fault occurs 
within a certain period of time [40]. For each type of a fault, a fault 
severity probability is the likelihood of a fault occurrence at a certain 
severity level. Table 3 lists the fault severity probability and the fault 
occurrence probability for each type of fault. In this study, the fault 
severity levels we selected are based on two considerations. First the 
fault severity levels we used are commonly reported in the previous FDD 
literature. Hence, we thought they should represent the common un
derstanding of HVAC system faults in the research area. Secondly, the 

Table 1 (a) 
Operation duration and time ratio under internal load level 1 (L1).  

Bin No. L1-bin #1 L1-bin #2 L1-bin #3 L1-bin #4 L1-bin #5 L1-bin #6 L1-bin #7 L1-bin #8 L1-bin #9 L1-bin #10 

Median OAT (◦C) − 20.64 − 15.32 − 9.98 − 4.66 0.67 5.99 11.32 16.65 21.98 27.31 
Operation duration (minutes) 1662 2119 2599 4257 8327 5587 4743 6631 9046 2009 
Duration ratio (%) 0.88 1.13 1.38 2.27 4.43 2.97 2.52 3.53 4.81 1.07  

Prob(fault sym total)=
∑num bin window

i
Prob

(
fault sym

⃒
⃒OPLoad− OAT

)

iProb(OPLoad− OAT)i Eq 4   
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primary purpose of this study is to illustrate the novel method, which 
can effectively evaluate measurement sensitivities. Therefore, using this 
method, the measurement sensitivities under common faults can be 
better quantified if more fault severity levels and associated occurrence 
probabilities can be added into the index calculation. It is noted that 
there are no complete fault occurrence probability distributions (for a 
specific type of a fault, or a fault at various severity levels) reported. 
Therefore, in this study, we employed expert estimates for the occur
rence probability distributions to calculate the SIs. Consequently, the SIs 
can be adjusted when the occurrence probability distributions are 
updated. 

We incorporated both fault occurrence probability distributions and 
fault severity probability distributions into the calculation of the mea
surement SIs for two reasons. First, a measurement is sensitive to a 
specific type of a fault at different severity levels. For example, the 
supply air temperature sensor of an AHU is more sensitive to the AHU 
cooling coil valve stuck fault at a 100% position than the same fault but 
at a 20% position severity level because the air temperature sensor will 
generate a higher SOP (i.e., probability of the temperature lower than 
the baseline), when the cooling valve is stuck at a 100% position than 
the SOP when the cooling valve is stuck at a 20% position. However, the 
occurrence likelihood of a fault at a certain severity level is different. 
Therefore, it will be more accurate to evaluate the sensitivity of a 
measurement to a specific type of a fault considering the occurrence 
likelihood of a specific type of a fault at a severity level. Secondly, a 
measurement is sensitive to different types of faults. When evaluating 
the overall sensitivity of a measurement under all types of faults, it needs 
to consider the likelihoods of the occurrence of all possible faults. 

2.5.1. Sensitivity index of a fault (SI_fault) 
The SI_fault quantifies how a measurement is sensitive to a specific 

type of fault. In the calculation of the SI_fault, we considered the fault 
severity. The SI_fault can be calculated given in Eqs (5)–(7). Equations 
(5) and (6) illustrates the calculation of SI for the positive symptoms and 
negative symptoms 

SI fault positive=
∑n

k=0

(
Prob(fault sym total)pos k

∗ Prob(fault severity)pos k

)
Eq 5  

SI fault negative=
∑n

k=0

(
Prob(fault sym total)neg k

∗ Prob(fault severity)neg k

)
Eq 6  

where Prob(fault sym total)k is the Prob(fault sym total) of the kth fault 
case (i.e., one fault type under one severity level) that is calculated from 
Eq (4). Prob(fault severity)k is the fault severity probability. For each 
type of fault, the Prob(fault severity) value can be found in Table 3. 

The aggregated SI_fault (SI_fault_sum) can be calculated by summing 
SI fault positive and SI fault negative together as given by Eq (7). 

SI fault sum= SI fault positive + SI fault negative Eq 7  

2.5.2. Global measurement sensitivity index (SI_measurement_global) 
The SI_measurement_global aggregates the SI_fault (including both 

positive and negative) calculated from each type of a fault. This index 

quantifies how a measurement is overly sensitive to all possible faults 
considered. The SI_measurement_global can be calculated given in Eq 
(8). The calculation of the SI_measurement_global includes the fault 
occurrence probability distributions. Consequently, if the fault occur
rence probability value is higher for specific types of faults, the 
SI_measurement_global value of a specific measurement could be higher, 
indicating that this measurement is more sensitive to the fault. There
fore, the measurement will be considered as a key performance indicator 
(KPI). The SI_measurement_global can be used to optimize the mea
surement deployment in the monitoring system. 

SI measurement global=
∑n

j=0

(
SI fault sumj ∗ Prob(fault)j

)
Eq 8  

where Prob(fault)j is the fault occurrence probability of the jth fault type 
as illustrated in Table 3. 

In the study, we investigated common fault types that are reported in 
the HVAC system operation. However, the SI_measurement_global value 
can be updated when more knowledge on HVAC system faults is ob
tained using the proposed calculation approach. 

3. Fault simulation 

In this study, we employed simulation data which were generated in 
HVACSIM+ environment to analyze the measurement sensitivity. The 
FDD data were curated by Granderson et al. [32]. In this section, we 
illustrate the system model in Section 3.1. In Section 3.2, we describe the 
simulation settings. In Section 3.3, we introduce the fault simulation 
process. 

3.1. Simulation platform 

3.1.1. Simulation software 
In this study, a previously developed VAV HVAC system simulation 

model was employed to simulate various faults. The VAV HVAC system, 
including both the dual-duct AHU and four associated VAV boxes, were 
modeled using the HVACSIM+ simulation software developed by Na
tional Institute of Standards and Technology [41]. 

HVACSIM+ uses a hierarchical structure where individual UNITs, 
each defined by a specific TYPE template representing a generic system 
component, are linked together to mimic their real-world interactions. 
These UNITs are organized into Blocks and Superblocks, allowing for 
simultaneous solutions and treating each Superblock as an independent 
subsystem in the overall simulation [41]. In this study, we employed an 
advanced numerical solver developed in Ref. [42] to efficiently solve the 
resulting nonlinear algebraic and differential equations within each 
Superblock. Fig. 3 illustrates the superblock hierarchy of the simulation 
of the dual duct AHU. The hierarchical modeling process enables the 
development of a complex system model, which may include multiple 
levels of equipment in a HVAC system (e.g., five levels shown in the 
figure). The detailed model development process can be found in 
Ref. [43]. 

3.1.2. Simulated HVAC system 
The simulation model was developed based on a VAV HVAC system, 

which was originally installed at the Energy Resource Station (ERS) of 
the Iowa Energy Center. The VAV HVAC system includes a dual-duct 

Table 1 (B) 
Operation duration and time ratio under internal load level 2 (L2).  

Bin No. L2-bin #1 L2-bin #2 L2-bin #3 L2-bin #4 L2-bin #5 L2-bin #6 L2-bin #7 L2-bin #8 L2-bin #9 L2-bin #10 

Median 
OAT (◦C) 

− 18.25 − 12.53 − 6.81 − 1.09 4.63 10.36 16.08 21.80 27.52 33.24 

Operation duration (minutes) 1590 6303 8788 16,339 18,946 15,897 14,239 22,673 28,388 7777 
Duration ratio (%) 0.85 3.35 4.68 8.69 10.08 8.46 7.58 12.07 15.11 4.14  
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AHU and four associated VAV boxes in four zones as shown in Fig. 4. The 
dual duct AHU system equips two separate supply air ducts as hot duct 
and cold duct, and two supply air fans in each duct to provide desired air 
circulation and thermal comfort to different zones. In this system, both 
the heating and cooling coils can operate at the same time. The hot air 
and the cold air will be mixed with dampers in VAV boxes at each zone. 
Four VAV boxes are installed in four rooms (i.e., East, South A, South B 
and West) at the ERS. 

Fig. 5 illustrates the detailed deployment location of each measure
ment. In the schematic, we demonstrate measurements in the AHU and 
one associated VAV box. The measurement deployment in the other 
three VAV boxes is the same with the VAV box shown in this schematic. 
Furthermore, we illustrate the location where the fault was injected. 

3.1.3. Description of measurements 
Data collected from various measurements in the BAS are employed 

by various data-driven FDD solutions. The measurement can be cate
gorized into three types as sensor readings, control command signals, 
and meter readings. In Fig. 4, various measurements are color-labeled 
such that the red color texts represent sensor readings, the blue color 

Table 2 
List of measurements.  

NO. Measurement 
name 

Description Measurement 
type 

Unit 

DDAHU side 
1 OA_CFM Outdoor air flow rate Sensor CFM 
2 OA_DMPR Outdoor air damper 

position signal 
Sensor Open 

(0–1) 
3 OA_DMPR_DM Outdoor air damper 

control signal 
(command) 

Control signal Open 
(0–1) 

4 MA_TEMP Mixed air temperature Sensor ◦F 
5 RA_CFM Return air flow rate 

(sum of all zones 
returns) 

Sensor CFM 

6 RA_DMPR Return air damper 
position signal 

Sensor Open 
(0–1) 

7 RA_DMPR_DM Return air damper 
control signal 

Control signal Open 
(0–1) 

8 RA_HUMD Return air humidity Sensor %RH 
9 RA_TEMP Return air temperature Sensor ◦F 
10 RF_DP Return fan differential 

pressure 
Sensor in.w.g. 

11 RF_SPD Return fan VFD speed Sensor Speed 
(0–1) 

12 RF_WAT Return fan power Meter Watt 
13 EA_DMPR Exhaust air damper 

position signal 
Sensor Open 

(0–1) 
14 EA_DMPR_DM Exhaust air damper 

control signal 
(command) 

Control signal Open 
(0–1) 

15 HSA_SP Hot deck supply air duct 
static pressure 

Sensor in.w.g. 

16 HSA_HUMD Hot deck supply air 
humidity 

Sensor %RH 

17 HSA_CFM Hot deck supply air flow 
rate 

Sensor CFM 

18 HSA_TEMP Hot deck supply air 
temperature 

Sensor ◦F 

19 HSF_DP Hot deck supply fan 
differential pressure 

Sensor in.w.g. 

20 HSF_SPD Hot deck supply fan 
VFD speed 

Sensor Speed 
(0–1) 

21 HSF_WAT Hot deck supply fan 
power 

Meter Watt 

22 CSA_SP Cold deck supply air 
duct static pressure 

Sensor in.w.g. 

23 CSA_HUMD Cold deck supply air 
humidity 

Sensor %RH 

24 CSA_CFM Cold deck supply air 
flow rate 

Sensor CFM 

25 CSA_TEMP Cold deck supply air 
temperature 

Sensor ◦F 

26 CSF_DP Cold deck supply fan 
differential pressure 

Sensor in.w.g. 

27 CSF_SPD Cold deck supply fan 
VFD speed 

Sensor Speed 
(0–1) 

28 CSF_WAT Cold deck supply fan 
power 

Meter Watt 

29 HWC_DAT Heating water coil 
discharge air 
temperature 

Sensor ◦F 

30 HWC_EWT Heating water coil 
entering water 
temperature 

Sensor ◦F 

31 HWC_LWT Heating water coil 
leaving water 
temperature 

Sensor ◦F 

32 HWC_MWT Heating water coil 
mixed water 
temperature 

Sensor ◦F 

33 HWC_VLV Heating water coil valve 
position signal 

Sensor Open 
(0–1) 

34 HWC_VLV_DM Heating water coil valve 
control signal 

Control signal Open 
(0–1)  

Table 2 (continued ) 

NO. Measurement 
name 

Description Measurement 
type 

Unit 

35 HWP_GPMC Heating water pump 
water flow rate through 
coil 

Sensor GPM 

36 HWP_GPMT Heating water pump 
total water flow rate 

Sensor GPM 

37 CHWC_DAT Cooling coil discharge 
air temperature 

Sensor ◦F 

38 CHWC_EAH Cooling coil entering air 
relative humidity 

Sensor %RH 

39 CHWC_EWT Cooling coil entering 
water temperature 

Sensor ◦F 

40 CHWC_LWT Cooling coil leaving 
water temperature 

Sensor ◦F 

41 CHWC_MWT Cooling coil mixed 
water temperature 

Sensor ◦F 

42 CHWC_VLV Cooling coil valve 
position signal 

Sensor Open 
(0–1) 

43 CHWC_VLV_DM Cooling coil valve 
control signal 

Control signal Open 
(0–1) 

44 CHWP_GPMC Chilled water pump 
water flow rate through 
coil 

Sensor GPM 

45 CHWP_GPMT Chilled water pump 
total water flow rate 

Sensor GPM 

VAV box side (Measurement names followed by _W, _SB, _SA, _and E, respectively to 
indicate different VAV boxes) 

1 RM_TEMP Room temperature Sensor ◦F 
2 VAV_DAT Mixing box discharge 

air temperature 
Sensor ◦F 

3 VAV_SP_C Mixing box cold deck 
dynamic pressure 

Sensor in.w.g. 

4 VAV_SP_H Mixing box hot deck 
dynamic pressure 

Sensor in.w.g. 

5 VAV_DMPR_C Mixing box cold deck 
damper control signal 

Control signal Open 
(0–1) 

6 VAV_DMPR_H Mixing box hot deck 
damper control signal 

Control signal Open 
(0–1) 

7 VAVCFM_C Mixing box cold deck 
air flow rate 

Sensor CFM 

8 VAVCFM_H Mixing box hot deck air 
flow rate 

Sensor CFM 

9 VAVCFM_T Mixing box total air 
flow rate 

Sensor CFM 

10 VAV_EAT_C Mixing box cold deck 
entering air 
temperature 

Sensor ◦F 

11 VAV_EAT_H Mixing box hot deck 
entering air 
temperature 

Sensor ◦F  
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Table 3 
Fault information.  

Fault ID/Fault name Fault severity level Fault occurrence probability Fault severity probability Fault ID/Fault name Fault severity level Fault occurrence probability Fault severity probability 

F1: SensorBias_CSA +2 ◦C 0.1 0.1 F7: DMPRStuck_Cold Stuck at 0% 0.05 0.1 
+4 ◦C 0.1 Stuck at 100% 0.1 
− 2 ◦C 0.1 Stuck at 20% 0.25 
− 4 ◦C 0.1 Stuck at 50% 0.2 

F2: 
SensorBias_HSA 

+2 ◦C 0.1 0.1 Stuck at 80% 0.1 
+4 ◦C 0.1 F8: DMPRStuck_Hot Stuck at 0% 0.05 0.1 
− 2 ◦C 0.1 Stuck at 100% 0.1 
− 4 ◦C 0.1 Stuck at 20% 0.25 

F3: SensorBias_CSP +2 inwg 0.1 0.1 Stuck at 50% 0.2 
+4 inwg 0.1 Stuck at 80% 0.1 
− 2 inwg 0.1 F9: DMPRStuck_OA Stuck at 0% 0.05 0.1 
− 4 inwg 0.1 Stuck at 100% 0.1 

F4: SensorBias_HSP +2 inwg 0.1 0.1 Stuck at 28% 0.25 
+4 inwg 0.1 Stuck at 45% 0.2 
− 2 inwg 0.1 Stuck at 80% 0.1 
− 4 inwg 0.1 F10: Fouling_Cooling_Waterside Minor 0.01 0.3 

F5: VLVStuck_Cooling Stuck at 0% 0.05 0.1 Moderate 0.3 
Stuck at 100% 0.1 Severe 0.3 
Stuck at 20% 0.25 F11: Fouling_Heating_Waterside Minor 0.01 0.3 
Stuck at 50% 0.2 Moderate 0.3 
Stuck at 80% 0.1 Severe 0.3 

F6: VLVStuck_Heating Stuck at 0% 0.05 0.1 F12: Fouling_Cooling_Airside Minor 0.02 0.3 
Stuck at 100% 0.1 Moderate 0.3 
Stuck at 20% 0.25 Severe 0.3 
Stuck at 50% 0.2 F13: 

Fouling_Heating_Airside 
Minor 0.02 0.3 

Stuck at 80% 0.1 Moderate 0.3 
F14:CoolSeqUnstable NA 0.3 1 Severe 0.3 

F15:HeatSeqUnstable NA 0.3 1  

Y. Chen et al.                                                                                                                                                                                                                                    



Building and Environment 261 (2024) 111683

9

texts represent control signals and the purple color texts represent meter 
readings, respectively. In the developed simulation model, a total of 89 
measurements were used to monitor system operation. Those measure
ments not only include the measurements in the dual duct AHU, but also 
include the measurements in downstream VAV boxes because fault ef
fects may propagate to different levels in an HVAC system due to close 
coupling among various equipment [15]. Table 2 lists the detailed 

description of each measurement in the systems. On the AHU side, there 
are 45 measurements. Among those measurements, 37 measurements 
collect sensor readings, five measurements collect control signals, and 
three measurements collect meter data. In each VAV box, nine mea
surements are sensor readings and two measurements are control sig
nals. It is noted that some measurements may not be often deployed in 
real practice due to the deployment costs. For example, heating coil 
discharge air temperature (HWC_DAT) and cooling coil discharge air 
temperature (CHWC_DAT) were seldom installed in the real system to 
monitor the system operation performance. But in this study, we also 
evaluated the sensitivity of those measurements to show that some 
measurements can be considered in the future design of the BAS to 
enhance the FDD capabilities. 

3.2. Simulation settings 

The simulation setting includes three parts as 1) control sequence 
and parameter settings, 2) zone load settings, and 3) environment 
parameter settings. The control sequence and parameter settings include 
setting the operation mode sequence, and individual component control 
sequences for fan, dampers, cooling coil valve and heating coil valve. 
Control parameters settings include the settings of proportional and 
integral gain for the controllers. In terms of zone loads, hourly loads 
from occupants, lighting and equipment, were determined according to 
Ref. [43], as shown in Fig. 6. Each zone used the same load setting. The 
TMY3 weather data for Des Moines, IA was used as the weather inputs 
because the system model was developed in Iowa in the U.S. 

Additionally, the simulation time step was set to 5 seconds. The data 
sampling rate was set to 1 minute. 

Fig. 3. Example demonstration of the simulation hierarchy.  

Fig. 4. System configuration at the ERS.  
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3.3. Simulated faults 

In this study, a total of 15 faults which are commonly studied by 
academic publications and reported by field engineers in the AHU side 
were imposed to obtain fault inclusive operation data [44–49]. The 
faults cover hardware faults (i.e., four sensor related faults (F1 to F4), 
five actuator related faults (F5 to F9), and four stationery component 
related faults (F10 to F13)) and software setting faults (i.e., two control 
parameter setting faults (F14 to F15)) as given in Table 3. 

For hardware faults, the simulation with multiple severity levels was 
performed for each type of the fault. For the software faults, the simu
lation with a single severity level was performed for each type of the 
fault. Consequently, a total of 55 fault simulation cases were carried out 
in this study. Each fault case was simulated to generate one year of 
operation data so that all system’s operational conditions can be covered 
to fully evaluate the measurement sensitivity under various operational 
conditions. 

Each fault simulation case (i.e., one type of a fault at one severity 
level for one year simulation) was continuously implemented in every 
operation day (i.e., from 12:00 a.m. to 11:59 p.m.) to obtain a steady 
operation status. The simulation was performed on a 3.7G CPU, 16 G 
RAM laptop and the simulation running duration was approximately 8 
hours. 

Sections 3.3.1 to 3.3.4 detail the description and implementation 
method for each type of a fault. 

3.3.1. Sensor related faults 
In an HVAC system, a large number of sensors are deployed to con

trol and monitor the system’s operation. Sensor related faults can 
directly affect control performances because the error signal will be 
input into the controller, causing improper control output [50]. 

In this study, we implemented four sensor related faults, which 
include the supply air temperature sensor bias fault (F1: SensorBias_CSA 
in the cold duct, and F2: SensorBias_HSA in the hot duct), and the supply 
air pressure sensor bias fault in both the cold duct and the hot duct (F3: 
SensorBias_CSP in the cold duct, and F4: SensorBias_HSP in the hot 
duct). For the sensor bias fault, both bias directions (i.e., the positive 
bias fault and the negative bias fault) were simulated. For the supply air 
temperature sensor bias faults, two severity levels (i.e., bias at 2 ◦C and 
at 4 ◦C) in each bias direction were implemented. For the supply air 
pressure sensor bias faults, two severity levels (i.e., bias at 0.007 psi (0.2 
in. wg) and at 0.014 psi (0.4 in. wg)) in each bias direction were 
implemented. Each bias fault was implemented by adding correspond
ing value to the sensor output in the TYPE components in the simulation 
platform. For supply air temperature sensor bias faults in both the cold 
duct and the hot duct, faulty signals were injected by modifying cold 
duct and hot duct temperature sensors built in TYPE 311, respectively. 
For supply air pressure sensor bias faults in both the cold duct and the 
hot duct, faulty signals were injected by modifying parameters in the 
pressure sensor model built in TYPE 305, respectively. 

3.3.2. Actuator related faults 
Various actuators such as dampers, valves and pumps are used to 

fulfill the control process and enable the system to meet the control 
objectives. The actuator faults can quickly cause operation performance 
degradations and hence result in undesired indoor thermal comforts or 
significant energy wastes. For example, studies show that dampers not 
working properly faults may cause 5.2 billion kWh/year electricity 
waste in the U.S [45,51]. 

In this study, we implemented five actuator related faults, including 
the cooling valve stuck fault (F5: VLVStuck_Cooling), the heating coil 

Fig. 5. VAV HVAC system configuration and measurement schematic.  

Fig. 6. Hourly zone load setting in the occupied period.  
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valve stuck fault (F6: VLVStuck_Heating): the cooling damper stuck fault 
(F7: DMPRStuck_Cold), the heating damper stuck fault (F8: 
DMPRStuck_Hot), and the outdoor air damper stuck fault (F9: 
DMPRStuck_OA). The stuck faults for the cooling coil, the heating coil, 
and the dampers were simulated at five severity levels as shown in 
Table 3. The valve stuck faults in the cooling coil and heating coil were 
injected by assigning a fixed valve position to the output of cooling coil 
and heating coil components built in TYPE 533. The cooling and heating 
dampers stuck faults were injected by assigning a fixed damper position 
to the output of the mixing box component built by either TYPE 531, 
532, or 534. Similarly, the outdoor air damper stuck fault was imposed 
by assigning a fixed damper position to the output of the mixing box 
component built in TYPE 325. 

3.3.3. Stationary component related faults 
An HVAC system contains many stationary components such as coils, 

ducts and filters to supply cooling or heating. Faults in stationary 
components can cause degradations because the original system design 
may be violated; and hence lead to cumulative zone thermal comfort 
deterioration and increased energy consumption. For example, Chen 
et al. reported that the filter restriction fault can cause 4%–31% annual 
fan power consumption increase in fan coil units [3]. However, 
compared to actuator related faults, stationary component related faults 
are often hardly to be detected because the incipient fault effects may be 
very small and cannot be easily captured by the FDD tool. 

In this study, we implemented four stationary component related 
faults, which include the cooling coil fouling water-side fault (F10: 
Fouling_Cooling_Waterside), and the heating coil fouling water-side 
fault (F11: Fouling_Heating_Waterside), the cooling coil fouling air- 
side fault (F12: Fouling_Cooling_Airside), and the heating coil fouling 
air-side fault (F13: Fouling_Heating_Airside). The coil water-side fouling 
fault is mainly caused by the deposition of mineral material of circu
lating water on the surfaces of heat exchanger in contact with water. The 
coil air-side fouling fault is the decreasing heat transfer capability and is 
mainly caused by the increased heat resistance such as dust on the coil 
plate fin. 

For the Fouling_Heating_Waterside and Fouling_Cooling_Waterside 
faults, three fault severity levels were imposed by decreasing the water 
flow rate and the decreasing heat transfer rate as shown in Table 3. For 
the Fouling_Heating_Airside and Fouling_Cooling_Airside faults, three 
fault severity levels were imposed by increasing airflow resistance and 
decreasing heat transfer rate as shown in Table 3. 

The waterside fouling faults were injected by modifying fin heat 
transfer coefficient, tube heat transfer coefficient, and the coil fluid flow 
resistance in the coil components built in TYPE 533. The airside fouling 
faults were injected by modifying fin and tube heat transfer coefficients 
in the coil component built by TYPE 533 and the air flow resistance in 
the flow resistance component built in TYPE 343. 

3.3.4. Control software setting faults 
Wrong settings of control software (e.g., control parameters or con

trol sequences) can cause the malfunction of controllers, and hence lead 
to an abnormal operation of a system. For example, studies show that 
improper control setup and commissioning and software programming 
errors could cause 3.3 billion kWh/year electricity waste in the U.S [45, 
51]. In HVAC systems, common faults in control parameter settings are 
improper settings of PID parameters in the controllers [52]. 

In this study, we implemented two control parameter setting related 
faults, which include the cooling sequence unstable (F14: Cool
SeqUnstable) fault, and the heating sequence unstable (F15: HeatSe
qUnstable) as given in Table 3. Both faults were imposed by changing 
the absolute value of the proportional band of the cooling and heating 
control sequences from a properly tuned value 45.7 to an improper value 
of 4 in the dual duct supply air temperature control component (TYPE 
586), respectively. The poorly tuned PID parameters further result in 
unstable cooling coil valve and heating coil valve operations, 

respectively, and hence oscillating supply air temperatures. For both 
faults, only one severity level (i.e., only one error proportional band 
value) was imposed. 

4. Results and discussion 

In this Section, we illustrate the analysis of the SI_fault (Section 4.1), 
and the analysis of the SI_measurement_global (Section 4.2). In addition, 
we discuss two considerations when using the proposed SIs (Section 
4.3). Lastly, we also provide one use case of the developed SIs (Section 
4.4). 

4.1. Analysis of the SI_fault 

Here, we use the VLVStuck_Heating fault, the SensorBias_CSP fault, 
and the CoolSeqUnstable to demonstrate the analysis of the SI_fault 
result. The complete SI_fault distribution table can be found in Appendix 
I of the paper.  

(1) F3: SensorBias_CSP fault case 

The SensorBias_CSP fault is the supply air pressure sensor bias fault 
in the cold duct as described in Section 3.3.1. Fig. 7 illustrates the 
positive SI_fault and negative SI_fault, which the values are higher than 
1, from all 89 measurements. It can be seen that for this type of the fault, 
eight measurements present relatively high sensitivity. Among them, the 
static pressure sensors in four associated VAV boxes rank very high as 
the SI_fault_negative values are from 8.99 to 9.27, and the SI_fault_
positive values are from 7.15 to 7.24. On the AHU side, the cold deck 
supply air fan speed measurement presents a relatively higher sensitivity 
because the SI_fault_negative and the SI_fault_positive are 3.5 and 1.69, 
respectively. We will use the SI_fault_sum (i.e., sum of SI_fault_positive 
and SI_fault_negative) to analyze fault signatures in Section 4.4.  

(2) F6: VLVStuck_Heating fault case 

The VLVStuck_Heating fault is the heating coil valve stuck fault as 
described in Section 3.3.2. Fig. 8 (a) and (b) illustrate the measurements, 
in which the positive SI_fault or negative SI_fault are higher than 5 from 
the measurements on the AHU side and the measurements on the VAV 
box side, respectively. 

It can be seen that most measurements are very sensitive to this type 
of the fault. For example, from the AHU side, the highest SI_fault_neg
tative is 33.79 on the HWC_MWT measurement, indicating that the 
heating coil mixing water temperature sensor can easily collect negative 
symptoms (e.g., temperature is lower than the baseline value), when the 
fault occurs. The measurements of HSA_TEMP, HWC_DAT, and 
HWC_LWT are the top three sensitive measurements based on the 

Fig. 7. SI_fault_positive and SI_fault_negative for the SensorBias_CSP fault.  
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SI_fault_positive results (i.e., 39.74, 39.73 and 39.32, respectively). The 
measurements on the VAV box side are also sensitive to this fault. For 
example, the SI_fault_positive of entering temperature sensors on the hot 
deck is 39.73 for all four boxes, indicating that the inlet temperature 
higher than the baseline can be easily captured, when the stuck position 
is higher than the normal position. Similarly, when the stuck position is 

higher than the normal position, the measurements on VAV mixing box 
air damper control signals are very sensitive as the SI_fault_positive 
values are from 14.85 to 21.22 for four VAV boxes, indicating the 
damper controllers try to mitigate the effects of the heating coil valve 
stuck. We will use the SI_fault_sum (i.e., sum of SI_fault_positive and 
SI_fault_negative) to analyze fault signatures in Section 4.4. 

Fig. 8. SI_fault_positive and SI_fault_negative for the VLVStuck_Heating fault: (a) measurements on the AHU side; (b) measurements on the VAV box side.  
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(3) F12: Fouling_Cooling_Airside fault case 

The Fouling_Cooling_Airside fault is the airside fouling on the cool
ing water coil fault as described in Section 3.3.3. Fig. 9 illustrates the 
positive SI_fault and negative SI_fault of the measurements, in which the 
values are higher than 2, on the AHU side and the measurements on the 
VAV box side, respectively. There are 14 measurements that the SI_fault 
values are higher than the 2. 

Compared to the actuator related faults, measurements are not very 
sensitive to the stationary component related faults. It can be seen that 
only 5 measurements (i.e., CSF_SPD, CSF_WAT, CSA_SP, HWP_GPMT, 
and CSF_DP) present relatively higher sensitivity to the fault compared 
to other measurements. Among them, the SI_fault_positive values on the 
measurements of CSF_SPD and CSF_WAT are 11.97 and 6.94, respec
tively, indicating that this fault can cause higher fan speed and corre
sponding fan energy consumption. We will use the SI_fault_sum (i.e., 
sum of SI_fault_positive and SI_fault_negative) to analyze fault signatures 
in Section 4.4.  

(4) F14: CoolSeqUnstable fault case 

The CoolSeqUnstable fault is the control parameter wrong setting 
fault as described in Section 3.3.4. Fig. 10 (a) and (b) illustrate the 
positive SI_fault and negative SI_fault, which the values are higher than 5 
from the measurements on the AHU side and the measurements on the 
VAV box side, respectively. 

It can be seen that most measurements from both the AHU side and 
the measurements on the VAV box side present highly sensitive values to 
this fault. For example, from the AHU side, the highest SI_fault_positive 
is 21.24 on the MA_TEMP measurement, indicating that the mixed air 
temperature sensor can easily collect positive symptoms (e.g., temper
ature is higher than the baseline value), when the fault occurs. This fault 
can also cause significant effects on the measurements of EA_DMPR_DM, 
OA_DMPR_DM, HWC_VLV_DM, HWC_VLV, and CSA_TEMP as SI_fault_
negative or SI_fault_positive is higher than 18 as illustrated in Fig. 9 (a). 
This means that those measurements can more easily capture the fault’s 
symptoms. 

Many measurements on the VAV box side are sensitive to this fault as 
can be seen in Fig. 9 (b). Among them, the SI_fault_positive of the 
entering temperature sensors on the cold deck (e.g., VAV_EAT_C_E) for 
four VAV boxes presents the highest value (i.e., 18.31). This is the same 
as the CSA_TEMP on the AHU. 

We will use the SI_fault_sum (i.e., sum of SI_fault_positive and 
SI_fault_negative) to analyze fault signatures in Section 4.4. 

4.2. Analysis of the global measurement sensitivity index 
(SI_measurement_global) 

The calculation of the SI_measurement_global is based on Eq (8) for 
all 15 types of faults in the VAV HVAC system. Figs. 11 and 12 illustrate 
the SI_measurement_global distributions for the measurements on the 
AHU side and on the VAV box side, respectively. To better illustrate the 
SI_measurement_global distribution, we split the bar chart into two parts 
according to whether the SI_measurement_global value is higher than 10 
or not. 

As shown in Fig. 11 (a), on the AHU side, the SI_measurement_global 
on 25 measurements is higher than 10. Among them, measurements on 
the hot deck present a relatively higher sensitivity considering all types 
of the faults. For example, the SI_measurement_global of the 
HWC_VLV_DM is 33.47, and SI_measurement_global of HSA_CFM is 
21.26. In addition to the measurements on the hot deck, temperature 
measurements (e.g., CSA_TEMP, CHWC_DAT, MA_TEMP, and RA_TEMP) 
are highly sensitive to faults, i.e., the SI_measurement_global values for 
CSA_TEMP, CHWC_DAT, MA_TEMP, and RA_TEMP are 16.9, 16.8, 16.22 
and 11.86, respectively. Furthermore, it is noticed that some metering 
measurements (e.g., CSF_WAT, HSF_WAT and RF_WAT) are not very 

sensitive considering all types of faults, even though some metering 
measurements can be relatively sensitive to a certain type of a fault. This 
indicates that meter data is not good as an indicator if various types of 
faults are considered. Lastly, some measurements present very low 
sensitivity to faults. For example, the SI_measurement_global values for 
CHWC_EWT and HWC_EWT are 0, indicating that no fault in the AHU 
system can affect water supply temperature from the upstreaming chiller 
plants. Measurements on the humidities (i.e., HSA_HUMD, CSA_HUMD, 
and RA_HUMD) are not sensitive to faults because there is no there is not 
a humidity control loop in the system. 

As shown in Fig. 12 (a), on the VAV box side, the SI_measur
ement_global on 28 measurements is higher than 10. Among them, the 
temperature measurements in the boxes demonstrate a relatively high 
sensitivity considering all types of faults. For example, the entering 
temperature sensors on the hot deck in each VAV box present equally 
high sensitivity (i.e., the SI_measurement_global value is 29.22 for 
VAV_EAT_H_E, VAV_EAT_H_SA, VAV_EAT_H_SB, and VAV_EAT_H_W). 
The entering temperature sensors on the cold deck in each VAV box also 
present equally high sensitivity (i.e., the SI_measurement_global value is 
17.95 for VAV_EAT_C_E, VAV_EAT_C_SA, VAV_EAT_C_SB, and 
VAV_EAT_C_W). However, we noticed that the room temperature sensor 
is not very sensitive considering all types of faults, even though room 
temperature can be significantly affected by some certain types of faults. 
The SI_measurement_global values for four room temperature mea
surements (i.e., RM_TEMP_SA, RM_TEMP_SB, RM_TEMP_W, and 
RM_TEMP_E) are 9.33, 7.12, 6.76 and 5.97, respectively. Additionally, 
the measurements of mixing box damper control are not very sensitive in 
some VAV boxes. For example, the SI_measurement_global values for 
VAV_DMPR_C_SB, and VAV_DMPR_H_W are 7.94 and 8.34, respectively. 
This indicates that faults cannot significantly affect mixing box air 
damper controls. Hence, it will be relatively difficult to capture fault 
behaviors from assessing mixing box air damper controls in those VAV 
boxes. 

In summary, a total of 53 measurements from the AHU side and the 
VAV box side can be considered as relatively sensitive to faults (i.e., the 
SI_measurement_global value is higher than 10). Therefore, they can be 
considered as key performance indicators when deploying measure
ments and developing BASs. 

4.3. Discussion of SI_fault and SI_measurement_global 

When using the SI_fault and SI_measurement_global to analyze the 
measurement sensitivity, there are two things needing to be noticed. 
First, the calculations of the SI_fault and the SI_measurement_global 
include uncertainties. For example, the determination of occurrence of 
fault symptoms affects both indices. In this study, we used the “three- 
sigma empirical rule” to set the symptom occurrence threshold and 

Fig. 9. SI_fault_positive and SI_fault_negative for the Fouling_Cooling_Air
side fault. 
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indicate observable symptoms. If the threshold is set to be low, the 
occurrence of fault symptoms will increase, resulting in a higher sensi
tivity of the measurement. Additionally, the determination of the fault 
occurrence probability distribution and the fault severity probability 
distributions affects the SIs as well. We employed expert knowledge in 
this study. However, we suggest the users update the SI distribution 
table in the Appendix when more information on the probability dis
tributions is acquired. Second, in real practice, the location of a sensor 
may significantly affect the sensitivity. For example, the air flow sensor 
is recommended to be installed in the center of the duct to avoid mea
surement noises. In our study, we did not investigate how the 

installation location of the sensor may affect the sensitivity because this 
is very hard to achieve in the simulation environment. 

4.4. Usage case of SI_fault 

A fault signature represents a set of fault symptoms that can be 
observed when a fault occurs. The ability of identification of a fault 
signature is very important for developing various FDD approaches. 
Various types of faults may manifest in distinct ways in terms of the 
sensitivities of various measurements, and hence present different sets of 
fault symptoms. Therefore, a FDD process is to accurately capture the 

Fig. 10. SI_fault for the CoolSeqUnstable fault. (a) Measurements on the AHU side; (b) measurements on the VAV box side.  
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unique fault signature. On the one hand, if the fault signature is minor, it 
means that very few measurements are sensitive to a fault (i.e., fault 
symptoms can hardly be captured by the measurements). Consequently, 
the fault is hard to be detected. On the other hand, if various faults 
present a similar signature, i.e., similar sensitivities on the same mea
surements of multiple faults cause indistinguishable symptoms, it means 
that the faults can be hardly diagnosed. 

In this study, we use SI_fault_sum (calculated from Eq. (7)) to analyze 
fault signature. Fig. 13 illustrates the heatmap of the SI_fault_sum of 89 
measurements in terms of all 15 types of faults. 

It can clearly be seen that compared with the sensor related faults (i. 
e., F1 to F4) and stationary component related faults (i.e., F10 to F13), 
the actuator related faults (i.e., F5 to F9) and the control setting related 
faults (i.e., F14 to F15) have more identifiable fault signatures because 
more measurements present higher SI_fault_sum. For example, for F6 
(VLVStuck_Heating), the SI_fault_sum of 73 measurements (82% of all 
measurements) is higher than 10. For F3 (SensorBias_CSP), the 
SI_fault_sum for four measurements (i.e., VAV_SP_C_W, VAV_SP_C_SB, 
VAV_SP_C_SA, and VAV_SP_C_E) in four VAV boxes are higher than 10, 
and can be used as the signatures to indicate this fault. For F14 (Cool
SeqUnstable), the SI_fault_sum of 33 measurements (37% of all mea
surements) is higher than 10. Contrarily, for the F12 
(Fouling_Cooling_Airside) fault, only one measurement (i.e., CSF_SPD) 
shows the SI_fault_sum value is higher than 10 (i.e., 12). This indicates 
that this fault could be very difficult to detect using existing measure
ments in this paper, i.e., the fault has a low detectability. 

Additionally, it should be noticed that there are fault types showing 
the closed SI_fault_sum values on certain measurements, resulting in low 
diagnosability if those measurements are used for diagnosing those 
faults. For example, for the F4 (SensorBias_HSP) fault, the SI_fault_sum 
values of HSF_DP, HSF_SPD, HSF_WAT, and HWC_DAT are 12.5, 12.5, 
12.5, and 11.3, respectively. For the F8 (DMPRStuck_Hot) fault, the 
SI_fault_sum values for those four measurements are 8.8, 12.8, 12.4, and 
14.7, respectively. This indicates that the FDD tool cannot distinguish 
the F4 fault from the F8 fault only using the above four measurements. 

In summary, the developed SIs can be used to effectively evaluate 
fault signatures, and support the development of FDD tools. 

5. Conclusions and future work 

In this study, we propose two novel sensitive indices, namely the SI 
of a fault (SI_fault) and the global measurement SI (SI_measur
ement_global). The SI_fault quantifies the sensitivity of a measurement 
to a specific type of fault. The SI_measurement_global quantifies the 
sensitivity of a measurement considering various types of faults. The 
developed SIs contains multiple elements including symptom occur
rence probability (SOP) distributions, fault severity probability distri
butions, and fault occurrence probability distributions to enhance the 
interpretability and scalability. 

The developed SIs have higher interpretability because it well cap
tures the system’s behaviors when a fault occurs. At the same time, the 
developed SIs are more scalable because fault severity probability dis
tributions and fault occurrence probability can be updated when more 
knowledge about the faults is obtained. 

We employed interval data generated from the HVACSIM+ simula
tion enviroment to evaluate the sensitivity of various measurements 
under common faults in a dual-duct VAV HVAC system. A total of 15 
common fault types under different severity levels were simulated, 
resulting in 55 fault cases. For each fault case, a one-year of system’s 
faulty operation data were obtained so that a comprehensive evaluation 
of the measurement sensitivity under various system operation condi
tions can be achieved. Additionally, the system wide measurement 
sensitivity analysis (from the upstream AHU to the downstream VAV 
boxes) provides a broader view of the measurement sensitivities. 

In the future, we plan to extend the study in four directions. First, we 
will apply the developed method and the SIs to other types of HVAC 

Fig. 11. SI_measurement_global for the AHU side.  

Fig. 12. SI_measurement_global for the VAV box side.  
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systems to build a comprehensive measurement SI distribution system. 
Secondly, we will evaluate the measurement sensitivity under various 
incipient faults, where fault transient symptoms on various measure
ments can be different from steady faulty operations investigated in the 
current study. Thirdly, we will evaluate the measurement sensitivity 
under various simultaneous faults. Lastly, we will investigate more 
software related faults including more fault types and more severity 
levels. 
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